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Abstract

There have been considerable methodological developments of Bayes factors for hy-
pothesis testing in the social and behavioral sciences, and related fields. This development
is due to the flexibility of the Bayes factor for testing multiple hypotheses simultaneously,
the ability to test complex hypotheses involving equality as well as order constraints on
the parameters of interest, and the interpretability of the outcome as the weight of ev-
idence provided by the data in support of competing scientific theories. The available
software tools for Bayesian hypothesis testing are still limited however. In this paper we
present a new R package called BFpack that contains functions for Bayes factor hypothe-
sis testing for the many common testing problems. The software includes novel tools for
(i) Bayesian exploratory testing (e.g., zero vs positive vs negative effects), (ii) Bayesian
confirmatory testing (competing hypotheses with equality and/or order constraints), (iii)
common statistical analyses, such as linear regression, generalized linear models, (multi-
variate) analysis of (co)variance, correlation analysis, and random intercept models, (iv)
using default priors, and (v) while allowing data to contain missing observations that are
missing at random.
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2 BFpack: Flexible Bayes Factor Testing in R

1. Introduction

This paper presents the software package BFpack which can be used for computing Bayes
factors and posterior probabilities for statistical hypotheses in common testing problems in
the social and behavioral sciences, medical research, and in related fields. Package BFpack
(Mulder et al. 2021) is available from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=BFpack. This new package is an answer to the in-
creasing interest of the scientific community to test statistical hypotheses using Bayes factors
in the software environment R (R Core Team 2021). Bayes factors enjoy many useful prac-
tical and theoretical properties which are not generally shared by classical significance tests
(Jeffreys 1961; Berger and Delampady 1987; Sellke, Bayarri, and Berger 2001; Mulder and
Wagenmakers 2016). These include its intuitive interpretation as the relative evidence in the
data between two hypotheses (Wagenmakers 2007; Rouder, Speckman, Sun, Morey, and Iver-
son 2009), its ability to simultaneously test multiple hypotheses which may contain equality
as well as order constraints on the parameters of interest (Hoijtink 2011), and its consistent
behavior which implies that the true hypothesis will be selected with probability one as the
sample size grows (Berger and Delampady 1987; Kass and Raftery 1995). This has resulted in
an increasing literature where Bayes factors have been used for testing scientific expectations
in many different fields of research including, but not limited to, gender research (Well, Kolk,
and Klugkist 2008), management research (Braeken, Mulder, and Wood 2015), econometrics
(Koop and Potter 1999), research on psychological contracts (De Jong, Rigotti, and Mulder
2017), criminal linkage (Porter 2016), opinion swing in political science (Irony, de Pereira, and
Tiwari 2000), and clinical trial research (Van Ravenzwaaij, Monden, Tendeiro, and Ioannidis
2019). For a thorough overview of the merits of Bayesian inference in applied research, see
for example Wagenmakers et al. (2018).

The Bayes factors that are implemented in BFpack are based on recent developments of
Bayesian hypothesis testing of equality and order constraints on location parameters, such as
(adjusted) means and regression coefficients (Mulder and Gu 2021; Gu, Hoijtink, Mulder, and
Rosseel 2019; Gu, Mulder, and Hoijtink 2017; Mulder 2014), variance components, such as
group variances and intraclass correlations (Böing-Messing, Van Assen, Hofman, Hoijtink, and
Mulder 2017a; Mulder and Fox 2019), and measures of association, (Mulder 2016; Mulder and
Gelissen 2019). These Bayes factors can be used for common testing problems in the social
and behavioral sciences, and related fields, such as (multivariate) t testing, (multivariate)
linear regression, (multivariate) analysis of (co)variance, or correlation analysis. The package
allows users to perform (i) exploratory Bayesian tests of whether a model parameter is zero,
negative, or positive, and (ii) confirmatory Bayesian tests where users manually specify a set
of competing hypotheses with equality and/or order constraints on the parameters of interest.
This will allow users to test their scientific expectations in a direct manner. Thus by providing
Bayesian statistical tests for multiple hypotheses with equality as well as order constraints,
BFpack makes important contributions to existing software packages, such as lmtest (Zeileis
and Hothorn 2002) and car (Fox and Weisberg 2021), which contain key functions for classical
significance tests of a single equality constrained hypothesis, e.g., lmtest::coeftest() and
car::linearHypothesis().

To ensure a simple and user-friendly experience, the different Bayes factors tests are imple-
mented via a single function called BF(), which is the workhorse of the package. The function
needs a fitted modeling object obtained from a standard R analysis (e.g., lm, glm; see Table 1

https://CRAN.R-project.org/package=BFpack
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R function Package Test Tested parameter Parameter name Bayes factor
t_test bain Student t test mean (1-sample test) mu AFBF

mean difference difference AFBF
(2-sample test)

bartlett_test BFpack heterogeneity of group variances g1 AFBF
variances

aov stats AN(C)OVA group means g1 AFBF
manova stats MAN(C)OVA group means g1_on_y1 AFBF
lm stats linear regression regression coefficients x1 AFBF

multivariate regression regression coefficients x1_on_y1 AFBF
cor_test BFpack correlation analysis measures of association y1_with_y2, uniform priors

y1_with_y2_in_g1 uniform priors
lmer lme4 random intercept group specific g1 uniform priors

model intraclass correlations
rma metafor meta-analysis between-study heterogeneity, Iˆ2, uniform prior,

effect size mu unit-information
prior

glm stats generalized linear model regression coefficients x1 approx. AFBF
coxph, survival survival analysis regression coefficients x1 approx. AFBF
survreg
polr MASS ordinal regression regression coefficients x1 approx. AFBF
zeroinfl pscl zero-inflated regression coefficients x1 approx. AFBF

regression models

Table 1: R functions, packages, type of test, tested parameters, example name of a tested
parameter, and the Bayes factor and prior that is used. Note: “AFBF” refers to the adjusted
fractional Bayes factor (Appendix A.1) and “approx. AFBF” refers to the adjusted fractional
Bayes factors using Gaussian approximations (Appendix A.3).

Examples of hypotheses
Precise testing H1 : θ = 0 vs H2 : θ 6= 0.
One-sided testing H1 : θ ≤ 0 vs H2 : θ > 0.
Interval testing H1 : |θ| ≤ ε vs H2 : |θ| > ε, for given ε > 0.
Exhaustive testing H1 : θ = 0 vs H2 : θ < 0 vs H3 : θ > 0.
Precise testing H1 : θ1 = θ2 = θ3 vs H2 : “not H1”
Order testing H1 : θ1 > θ2 > θ3 vs H2 : θ1 < θ2 < θ3 vs H3 : “neither H1, nor H2”.
Equality and order testing H1 : θ1 < θ2 = θ3 versus H2 : “not H1”.

Table 2: Examples of hypothesis tests that can be executed using BFpack.

for a complete overview), and in the case of a confirmatory test a string that specifies a set of
competing hypotheses (examples of hypotheses are provided in Table 2). Another optional ar-
gument is the specification of the prior probabilities for the hypotheses. By building on these
traditional statistical analyses, which are well-established by the R community, we present
users additional statistical measures which cannot be obtained under a frequentist framework,
such as quantification of the relative evidence in the data between a broad class of statistical
hypotheses.
When testing hypotheses using the Bayes factor, the use of arbitrary or ad hoc priors should
generally be avoided (Lindley 1957; Jeffreys 1961; Bartlett 1957; Berger and Pericchi 2001).
Therefore the implemented tests in BFpack are based on default Bayes factor methodology.
Default Bayes factors can be computed without requiring external prior knowledge about the
magnitude of the parameters. The motivation is that, even in the case prior information is
available, formulating informative priors which accurately reflect one’s prior beliefs under all
separate hypotheses under investigation is a very challenging and time-consuming endeavor
(Berger 2006).
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Different default Bayes factors with default priors are implemented for testing different types
of parameters, such as location parameters. For testing unbounded parameters, such as loca-
tion parameters and group variances, adjusted fractional Bayes factors (O’Hagan 1995; Mulder
2014; Böing-Messing et al. 2017a) have been implemented. These Bayes factors have analytic
expressions and are therefore easy to compute. The implied fractional priors contain minimal
information so that maximal information in the data is used for hypothesis testing (O’Hagan
1995; Berger and Mortera 1995; Conigliani and O’Hagan 2000). For testing bounded parame-
ters, such as measures of association, intraclass correlations, or between-study heterogeneity,
proper uniform priors are implemented. When testing intraclass correlations under random
intercept models or the between-study heterogeneity in a meta-analysis, a novel marginal
modeling approach is employed where the random effects are integrated out (Mulder and Fox
2019; Fox, Mulder, and Sinharay 2017; Mulder and Fox 2013; Van Aert and Mulder accepted).
Besides testing hypotheses based on substantive expectations, testing intraclass correlations
is also useful for building multilevel models as the marginal model approach provides a more
general framework for testing covariance structures than regular mixed effects models.

To also facilitate the use of Bayes factors for more general testing problems, an approximate
Bayes factor is also implemented which is based on a large sample approximation of the
posterior having an approximate Gaussian distribution. The approximate Bayes factor only
requires the (classical) estimates of the parameters that are tested, the corresponding error
covariance matrix, and the sample size of the data that was used to get the estimates and
covariance matrix. The resulting approximated Bayes factor can be viewed as a Bayesian
counterpart of the classical Wald test. This makes the approximate Bayes factor very useful
as a general test for statistical hypotheses when exact tests are not available. In Section 4.4
we show how to obtain perform an approximate Bayesian hypothesis test using the output of
lmtest::coeftest(). Table 1 shows for which models an exact Bayes factor is implemented
and for which models we make use of the approximation.

Before presenting the statistical methodology and functionality of BFpack it is important to
understand what BFpack adds to the currently available software packages for Bayes factor
testing. First, the R package BayesFactor (Morey, Rouder, Jamil, Urbanek, Forner, and Ly
2018) mainly focuses on precise and interval null hypotheses of single parameters in Student
t tests, anova designs, and regression models. It is not designed for testing more complex
relationship between multiple parameters. Second, the package BIEMS (Mulder, Hoijtink,
and De Leeuw 2012), which comes with a user interface for Windows, can be used for testing
various equality and order hypotheses under the multivariate normal linear model. The com-
putation of the Bayes factors however is too slow for general usage when simultaneously testing
many equality constraints as equality constraints are approximated with interval constraints
that are made sufficiently small using a computationally intensive step-wise algorithm. Third,
the bain package (Gu et al. 2021) computes approximated default Bayes factors by assuming
normality of the posterior and a default prior. The package has shown good performance
for challenging testing problems such as structural equation models. For approximate Bayes
factors, BFpack package also builds on the functionality of bain for combinations of order
constraints that cannot be written in matrix notation of full row-rank. Unlike bain however,
BFpack utilizes existing R functions such as dmvnorm() or pmvnorm() from the mvtnorm pack-
age (Genz, Bretz, Miwa, Mi, and Hothorn 2021) and therefore does not contain numerical
errors due to random sampling. Finally the free statistical software environment JASP (Love
et al. 2019), which has contributed tremendously to the use of Bayes factors in psychological
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research and other research fields, is specifically designed for non-R users by providing a user-
friendly graphical user-interface similar to SPSS. Under the hood, JASP calls R functions for
Bayes factor testing, such as several functions implemented in the R packages BayesFactor
or bain. BFpack, on the other hand, is developed to give R users a flexible tool for testing a
very broad class of hypotheses involving equality and/or order constraints on various types
of parameters (means, regression coefficients, variance components, and measures of associ-
ation) under common statistical models by building on standard R functions. Finally note
that Bayes factors are also implemented in other R packages for various purposes, such as the
condir package for human threat conditioning research (Krypotos, Klugkist, and Engelhard
2017), the BAS package for Bayesian variable selection and model averaging (Clyde, Ghosh,
and Littman 2018), BayesMed for Bayesian mediation analysis (Nuijten, Wetzels, Matzke,
Dolan, and Wagenmakers 2014), or BayesVarSel for objective Bayesian variable selection in
linear models (Garcia-Donato, Forte, and Vergara-Hernandez 2020; Garcia-Donato and Forte
2018).
The paper is organized as follows. Section 2 describes the theoretical background of Bayes
factors and posterior probabilities Section 3 gives a general explanation about the usage of the
main function BF() in BFpack. Section 4 presents 8 different applications of the methodology
and software for a variety of testing problems. The paper ends with some concluding remarks
in Section 5.

2. Theoretical background of Bayesian statistical inference
Let us consider a statistical model which contains a vector of Q key parameters of interest,
denoted by θ, while φ contains the V nuisance parameters of the model. Depending on
the goal of the analysis, the parameters of interest and nuisance parameters may vary. For
example, in an analysis of variance, the group means are the parameters of interest and the
within group variance is a nuisance parameter (Klugkist, Laudy, and Hoijtink 2005). On
the other hand when one is interested in testing an equality or order of the group variances
(Böing-Messing et al. 2017a), the group variances are the parameters of interest and the group
means are treated as nuisance parameters.
BFpack consists of a variety Bayes factors for testing a set of T hypotheses with linear equality
and/or order constraints on the key parameters θ of the form

Ht : Reθ = re & Roθ > ro, (1)

where [Re | re] is a re × (Q + 1) augmented matrix specifying the equality constraints on θ
under HT , and [Ro | ro] is a ro×(Q+1) augmented matrix specifying the order (or one-sided)
constraints on θ under HT , for t = 1, . . . , T constrained hypotheses. A hypothesis index is
omitted in the restriction matrices [Re | re] and [Ro | ro] to simplify the notation. Examples
of constrained hypotheses are given in Table 2. By default BFpack executes a standard
(exploratory) hypothesis test. The hypotheses that are tested in the exploratory analysis
depend on the class of the fitted model (Section 3 and Section 4). If a user is interested
in executing a specific (confirmatory) hypothesis test based on scientific expectations, where
hypotheses contain competing equality and/or order constraints as in Equation 1, the user
can manually specify the constrained hypotheses (Section 3 and Section 4). Finally note that
the notation H0, for the traditional “null” hypothesis of “no effect”, is not used as BFpack
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builds on the idea that researchers can be flexible in terms of (i) the types of hypotheses
to test and (ii) the number of hypothesis to test, instead of restricting to only testing the
traditional (precise) null hypothesis against a two-sided alternative.
The Bayes factor between two constrained hypotheses, say, H1 against H2, is defined by the
ratio of the marginal likelihoods under the two hypotheses, i.e.,

B12 = p1(Y)
p2(Y) =

∫∫
p1(Y | θ1,φ1)π1(θ1,φ1)dθ1dφ1∫∫
p1(Y | θ2,φ2)π2(θ2,φ2)dθ2dφ2

, (2)

where the marginal likelihood, denoted by pt(Y) underHt, is computed as the integral over the
product of the likelihood of the dataY, denoted by pt(Y | θt,φt) under hypothesisHt, and the
prior, denoted by πt(θt,φt) under Ht, over the respective constrained parameter spaces of the
free parameters θt and φt under hypothesis Ht, which is given by {θ | Reθ = re & Roθ > ro}.
As the marginal likelihood quantifies the predictive performance of a prior and hypothesis
of the observed data, the Bayes factor B12 can be interpreted as a relative measure of the
evidence in the data for hypothesis H1 relative to hypothesis H2 (Kass and Raftery 1995).
For example, if B12 = 1, this implies that both hypotheses receive equal support from the
data, or if B12 = 30, this implies that H1 receives 30 times more evidence than H2, which
would suggest strong evidence in favor of H1 against H2. In BFpack Bayes factors are first
computed of each constrained hypothesis against an unconstrained hypothesis, denoted by
Hu, which does not assume any constraints under the model of interest, and subsequently the
transitivity relationship is used to obtain Bayes factors between the constrained hypotheses,
e.g., B12 = B1u/B2u.
When specifying prior probabilities for the hypotheses under investigation, Bayes factors can
be used to obtain the posterior probabilities of the hypotheses using

P(Ht | Y) = P(Ht)Btu∑T
t′=1 P(Ht′)Bt′u

, (3)

where P(Ht) denotes the prior probability that Ht is true before observing the data, such
that ∑T

t′=1 P(Ht′) = 1 holds. The posterior probability of Ht quantifies the plausibility that
hypothesisHt is true after observing the data under the assumption that one of the hypotheses
under investigation is true. Equation 3 shows how the posterior probability combines the
evidence in the data (through the Bayes factors) and the prior probabilities. Equivalently,
when considering two hypotheses, the Bayes factor is used to update the prior odds to obtain
the posterior odds according to

P(H1 | Y)
P(H2 | Y) = B12 ×

P(H1)
P(H2) . (4)

In BFpack equal prior probabilities are specified by default, i.e., P(Ht) = 1
T . In this case, the

posterior odds between hypotheses will be equal to the Bayes factor (Equation 4). Users can
manually specify other choices for the prior probabilities depending on the context.
Guidelines for interpreting Bayes factors and posterior probabilities have been provided in the
literature (Jeffreys 1961); see Table 3. It is important to note however that these guidelines
should not be used in a strict sense as the evidence for a hypothesis lies on a continuous
scale. In the end it is up to the scientific community to judge when enough evidence has been
collected to conclude whether a hypothesis is true or not.
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B12 P(H1 | Y) Evidence for H1
1 to 3.2 0.5 to 0.76 Mild
3.2 to 10 0.76 to 0.91 Substantial
10 to 32 0.91 to 0.97 Strong
32 to 100 0.97 to 0.99 Very strong
> 100 > 0.99 Decisive

Table 3: Guidelines for interpreting the Bayes factors B12 (Jeffreys 1961) and posterior prob-
ability of H1 assuming equal prior probabilities.

To facilitate the interpretation, posterior probabilities can also be interpreted in terms of
conditional error probabilities given the observed data (Berger, Brown, and Wolpert 1994;
Hoijtink, Mulder, Van Lissa, and Gu 2019c). For example, when one would conclude that
hypothesis H1 is true based on a posterior probability of 0.80, there would be a conditional
probability of 0.20 of drawing the wrong conclusion given the observed data. This idea may
guide researchers who are relatively new to Bayesian statistics when interpreting Bayes factors
and posterior probabilities.
As the computation of marginal likelihoods in Equation 2 can be expensive (Kass and Raftery
1995), BFpack utilizes a special form of the Bayes factor which avoids computing marginal
likelihoods when possible. The special expression is referred to as the extended Savage-Dickey
density ratio, which is defined by

Btu = Be
tu ×Bo

tu

= πu(θe = re | Y)
πu(θe = re) × Pu(θo > ro | θe = re,Y)

Pu(θo > ro | θe = re) , (5)

where θe = Reθ and θo = Roθ (computational details can be found in Appendix A). The
Bayes factor in Equation 5 holds when the prior under the constrained hypothesis is propor-
tional to the prior under the unconstrained hypothesis, and zero elsewhere. The extended
Savage-Dickey density ratio for an equality/order constrained hypothesis against an uncon-
strained alternative was reported in Mulder and Gelissen (2019), which builds on earlier work
(Dickey 1971; Klugkist et al. 2005; Pericchi, Liu, and Torres 2008; Wetzels, Grasman, and
Wagenmakers 2010; Mulder, Hoijtink, and Klugkist 2010; Gu et al. 2017; Mulder, Wagen-
makers, and Marsman 2020b, among others). Interestingly, the four statistical measures in
Equation 5 explicitly show how the Bayes factor balances between fit and complexity when
evaluating constrained hypothesis (similar, in a way, as the AIC or BIC):

• The marginal posterior density evaluated at θe = re (numerator of first factor) is a
measure of the relative fit of the equality constraints of Ht relative to Hu because a
large (small) posterior value under the unconstrained model indicates that there is
evidence in the data that θe is (not) close to re.

• The conditional posterior probability of θo > ro given θe = re (numerator of second
factor) is a measure of the relative fit of the order constraints of Ht relative to Hu

because a large (small) probability under the unconstrained model indicates that there
is evidence in the data that the order constraints (do not) hold.

• The marginal prior density evaluated at θe = re (denominator of first factor) is a
measure of the relative complexity of the equality constraints ofHt relative toHu because
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a large (small) prior value indicates that the prior for θe is (not) concentrated around
re, and thus there is little (big) difference between the precise formulation θe = re and
the unconstrained formulation Hu.

• The conditional prior probability of θo > ro given θe = re (denominator of second
factor) is a measure of the relative complexity of the order constraints of Ht relative to
Hu because a large (small) probability under the unconstrained model indicates that
the order constrained subspace under Ht is relatively large (small), indicating that the
constrained model is complex (simple).

As Bayes factors are known to be sensitive to the choice of the prior, arbitrary or ad hoc
prior specification should be avoided. BFpack has several default Bayes factor and prior
specification methods implemented depending on the nature of the statistical model and its
key parameters. In the case of testing location parameters (Mulder and Gu 2021) and group
variances (Böing-Messing et al. 2017a), generalized adjusted fractional Bayes factors are used
based on minimal fractions under all groups where the implicit fractional prior is adjusted
to the boundary of the constrained space (e.g., to the test value for a Bayesian t test). The
fractional prior is located to the boundary of the constrained space to abide the rational that
small effects are more plausible a priori than large effects (typical in applied research) and
that negative effects are equally plausible as positive effects (Mulder 2014; Mulder and Olsson-
Collentine 2019). The default Bayes factor is fully automatic for a given set of constrained
hypotheses, and thus a prior scale of the effects does not need to be specified based on
prior expectations about the anticipated effects. Adjusted fractional Bayes factors based on
Gaussian approximations are used under statistical models when an exact expression of the
fractional Bayes factor is unavailable (Gu et al. 2017). When testing measures of association
(Mulder and Gelissen 2019) and intraclass correlations (Mulder and Fox 2019), which are
bounded in an interval, proper uniform priors are used. An overview of the technical details
of these Bayes factors can be found in Appendix A.

3. Bayes factor testing using the package
Bayes factor tests can be executed by calling function BF(). The function has the following
arguments:

• x, a fitted model object that is obtained using a R function. An overview of R functions
that are currently supported can be found in Table 1.

• hypothesis, a string specifying the hypotheses with equality and/or order constraints
on the key parameters of interest. To get an overview of the key parameters that can
be tested under a fitted model object.

– The default setting is hypothesis = NULL, in which case only exploratory tests on
the key parameters are executed. The tests that are executed in the exploratory
test are discussed below.

– The parameter names are based on the names of the estimated key parameters.
An overview of the key parameters is given using function get_estimates()
(i.e., get_estimates(model1), where model1 is a fitted model object). For ex-
ample, if the coefficients in a fitted lm object, say, fit1, have the names weight,
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height, and length, and the constraints in the hypothesis argument should be
formulated on these character strings.

– Separate constraints within a hypothesis are separated with an ampersand “&”.
Hypotheses are separated using a semi-colon “;”. For example hypothesis =
"weight > height & height > 0; weight = height = 0" implies that the first
hypothesis assumes that the parameter weight is larger than the parameter height
and that the parameter height is positive, and the second hypothesis assumes
that the two parameters are equal to zero. Note that the first hypothesis could
equivalently have been written as weight > height > 0.

– Brackets, “(” and “)”, can be used to combine constraints of multiple hypothe-
ses. For example hypothesis = "(weight, height, length) > 0" denotes a
hypothesis where the parameters weight, height, and length are positive. This
could equivalently have been written as hypothesis = "weight > 0 & height >
0 & length > 0".

– In general we recommended not to specify order hypotheses that are nested, such as
hypothesis = "weight > height > length; weight > (height, length)",
where the first hypothesis (which assumes that weight is larger than height and
that height is larger than length) is nested in the second hypothesis (which as-
sumes that weight is largest and no constraints are specified between height and
length). The reason is that the Bayes factor for the simpler hypothesis against
the more complex hypothesis would then be bounded. Therefore the scale of the
Bayes factor would become more difficult to interpret, and the evidence could not
accumulate to infinity for the true hypothesis if the true hypothesis would be the
smaller order hypotheses (e.g., see Mulder et al. 2010). If however a researcher has
theoretical reasons to formulate nested order hypotheses these can be formulated
and tested using the BF() function of course.

– When testing hypotheses on group variances on an object of class ‘bartlett_htest’
(Table 1), only simple constraints are allowed where a variance is equal to, greater
than, or smaller than another variance.

• prior.hyp, a numeric vector specifying the prior probabilities for the hypotheses in the
hypothesis argument in a confirmatory test. The default setting is prior.hyp = NULL
which sets equal prior probabilities.

• complement, a logical value which specified if a complement hypothesis is included
in the tested hypotheses specified under hypothesis. The default setting is TRUE. The
complement hypothesis covers the remaining parameters space that is not covered by the
constrained hypotheses. For example, if an equality hypothesis and an order hypothesis
are formulated, say, hypothesis = "weight = height = length; weight > height
> length", the complement hypothesis covers the remaining subspace where neither
"weight = height = length" holds, nor "weight > height > length" holds.

In the case the class of the fitted model x is not supported, BF.default() is called which
executes an approximate fractional Bayes factor test (Section A.3). In this case, the following
(additional) arguments are required:
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• x, a named numeric vector of the estimates (e.g., MLE) of the parameters of interest
where the labels are equal to the names of the parameters which are used for the
hypothesis argument.

• Sigma, the approximate posterior covariance matrix (e.g., error covariance matrix) of
the parameters of interest.

• n, the sample size that was used to acquire the estimates and covariance matrix.

When running the BF() function on a fitted model, an exploratory test is always executed
(when hypothesis = NULL, only an exploratory test is executed). In an exploratory test the
models that are considered are based on the full model with different restrictions under the
constrained hypotheses. The exploratory tests that are executed depend on the class of the
object x. The choice of the tests is based on the standard tests that are executed for an object
of this class. In (M)AN(C)OVA, when x is of class ‘aov’, ‘maov’, or ‘manova’, and the factors
are modeled as 0/1 dummy covariates, Bayes factors are computed for exploratory testing
the separate main effects and the separate interaction effects (if present in the model). The
motivation is that such tests are of main interest when performing (M)AN(C)OVA analyses.
Section 4.2 presents for an example ANOVA analysis. When x is of class ‘bartlett_htest’,
i.e., when testing group variances, the exploratory analysis tests whether there is homogeneity
of variances or not, again similar as in the standard analysis for a Bartlett test. Section 4.3
presents for an example analysis. For all other classes, the exploratory analysis executes
exhaustive tests (Table 2) of whether each separate parameter is zero, negative, or positive
(i.e., θ = 0 versus θ < 0 versus θ > 0). Exhaustive tests are executed instead of a standard
precise tests (i.e., θ = 0 versus θ 6= 0) because the exhaustive test also gives insight about the
direction of a possible effect. In each exploratory test equal prior probabilities are used for
the hypotheses.
A confirmatory hypothesis test is executed if one or more constrained hypotheses are spec-
ified using the hypothesis argument. A constrained hypothesis has equality and/or order
constraints on the key parameters given in Equation 1. These constrained hypotheses can be
based on prior expectations, scientific expectations, or formal substantive theories.
The output is an object of class ‘BF’. When printing the summary of the object, using the
summary() function, the following is presented:

• The resulting posterior probabilities of the hypotheses in the exploratory tests.

• An extensive overview of the results of the confirmatory test if constrained hypotheses
are formulated using the hypothesis argument, which includes

– the posterior probabilities of the hypotheses in the confirmatory test,
– the Evidence matrix containing the Bayes factors between all pairs of hypotheses

in the confirmatory test,
– the Specification table containing the quantities in the extended Savage-Dickey

density ratio for the hypotheses in the confirmatory test, i.e.,
◦ The first column “complex=” contains the relative complexity of the equality
part (“=”) of a constrained hypothesis (the denominator in the first factor of
Equation 5).
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◦ The second column “complex>” contains the relative complexity of the order
(or one-sided) part (“>”) of a constrained hypothesis (the denominator in the
second factor of Equation 5).

◦ The third column “fit=” contains the relative fit of the equality part (“=”)
of a constrained hypothesis (the numerator in the first factor of Equation 5).

◦ The fourth column “fit>” contains the relative fit of the order (or one-sided)
part (“>”) of a constrained hypothesis (the numerator in the second factor of
Equation 5).

◦ The fifth column “BF=” contains Be
tu in Equation 5.

◦ The sixth column “BF>” contains Bo
tu in Equation 5.

◦ The seventh column “BF” contains the Bayes factor of a constrained hypothesis
against an unconstrained alternative, Btu = Be

tu ×Bo
tu, in Equation 5.

◦ The eighth column displays the posterior probabilities of the hypotheses which
combines the evidence in the data (quantified by the Bayes factor) and the
prior probabilities.

– and the hypotheses that are tested in the confirmatory test.

For Bayes factors that cannot be expressed as a Savage-Dickey density ratio (which is the
case when testing equality constraints on variance components), NAs are printed in the first
and third column of the Specification table.
When printing an object of this class, using the print() function, the results of the ex-
ploratory test is printed when hypothesis = NULL, and the results of the confirmatory test
is printed when hypotheses are specified in the hypothesis argument. As the number of sep-
arate tests that are executed in an exploratory analysis can be very large, only the posterior
probabilities of the hypotheses are printed, and not all separate evidence matrices, not to
overwhelm the user with too much output. For the exploratory tests and the confirmatory
tests, all Bayes factors for each constrained hypothesis against the unconstrained (full) model
can be extracted from the BF object by taking the element BFtu_exploratory or the element
BFtu_confirmatory, respectively. These can be used to compute the Bayes factors between
the constrained hypotheses using the transitive relationship, e.g., B12 = B1u/B2u.

4. Applications

This section presents eight empirically motivated analyses using BFpack on different types of
statistical models. Each subsection is discussed using the same format: first the statistical
model and standard exploratory hypothesis test is presented, followed by a confirmatory
test in applied research field, and finally the analysis is discussed using BFpack. In some
subsections additional statistical elaborations are provided to give readers more insight about
certain aspects of the method or to discuss possible extensions. On https://github.com/
cjvanlissa/BFpack_paper, a R/Markdown version of these applications can be found to
facilitate the reproducibility of the analyses.

https://github.com/cjvanlissa/BFpack_paper
https://github.com/cjvanlissa/BFpack_paper
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4.1. Bayesian t testing

Statistical model and exploratory hypothesis test
The t test is one of the most commonly used statistical tests in applied research. In the case
of a one-sample t test it is tested whether a normal mean µ is equal to a constant or not when
data follows a normal distribution, N(µ, σ2), where σ2 is an unknown population variance
which serves as nuisance parameter. In the case of a two-sample t test it is tested whether the
mean difference between two normally distributed independent samples or dependent (paired)
samples, i.e., θ = µ1−µ2, where µ1 and µ2 are the respective normal population means, equals
zero or not.
In order to execute a Bayesian t test using BFpack, first a classical t test needs to be performed
using the t_test() function. This function is equivalent to the standard t.test() function
except that the fitted object also contains the sample size(s) and the sample variance(s), which
are needed to compute Bayes factors. Next the fitted object is plugged into the BF() function
to perform a Bayesian t test using the generalized fractional Bayes factor (Appendix A.1).
The fractional prior contains minimal information and is centered at the null value.
In the case of a one-sample t test, BFpack executes an exhaustive exploratory test of whether
the normal mean is equal to a pre-specified null value µ0, whether it is smaller than µ0, or
whether it is larger than µ0, i.e.,

H1 : µ = µ0 versus H2 : µ < µ0 versus H3 : µ > µ0.

For a confirmatory test, hypotheses can be formulated on the population mean which has
label mu (Table 1). For the two-sample case, an exhaustive exploratory test is executed of
whether the mean difference, i.e., θ = µ1 − µ2, is zero, negative, or positive, i.e.,

H1 : θ = 0 versus H2 : θ < 0 versus H3 : θ > 0.

For a confirmatory test, hypotheses can be formulated on the mean difference which has
label difference (Table 1). Below we illustrate the testing procedure for an independent
two-sample t test.

Confirmatory hypothesis test in medical research
We consider a confirmatory two-sample t test for an application discussed in Venables and
Ripley (2002). The data set birthwt contains information of 189 infants at a US hospital, and
is available from the R package MASS (Ripley 2021). A number of variables are presented in
the data set, with the main interest being the birth weight. In this example, we investigate
whether the smoking status of the mother during pregnancy (0 denotes nonsmoking and
1 denotes smoking) affects the average birth weights of the infants (in grams). There are
n1 = 115 infants whose mothers did not smoke during pregnancy and n2 = 74 infants whose
mothers smoked during pregnancy. Researchers expect that infants from the nonsmoking
group have a larger average birth weight than the infants from the smoking group. This can
be tested using a right one-sided t test on the mean difference θ:

H1 : θ = 0 versus H2 : θ > 0,

where θ = µ1 − µ2 is the mean difference, and µ1 and µ2 are the average birth weights in
the nonsmoking group and the smoking group, respectively. Note that the hypotheses can
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equivalently be written as H1 : µ1 = µ2 and H2 : µ1 > µ2. Hypothesis H1 implies that
the smoking status of mothers during pregnancy does not affect the average weight of their
infants while H2 implies that smoking of pregnant women has a negative effect on the average
weight of their infants. As there is no medical reason that smoking can have a positive effect
on the infants weights a third hypothesis H3 : θ < 0 is excluded from the test. Under the
current model we assume that the within group variances are equal across the two groups.

Analyses using BFpack

To perform the Bayesian t test using BFpack, first a classical t test is executed. Next the
output of this analysis is plugged into the BF() function where hypotheses are formulated on
the mean difference, which has label “difference”:

R> library("MASS")
R> library("bain")
R> library("BFpack")
R> smoke0 <- subset(MASS::birthwt, smoke==0, select=bwt)
R> smoke1 <- subset(MASS::birthwt, smoke==1, select=bwt)
R> ttest1 <- bain::t_test(smoke0, smoke1, alternative = "greater",

var.equal = TRUE)
R> print(ttest1)
R> constraints1 <- "difference = 0; difference > 0"
R> BF1 <- BF(ttest1, hypothesis = constraints1, complement = FALSE)
R> summary(BF1)

On the 1st, 2nd, and 3rd lines the R packages MASS (containing the data), bain (containing
the classical t test function t_test() which is equivalent to the t.test() function but which
also contains sample variances and sample sizes in the output), and BFpack (containing the
Bayesian tests we present here) are loaded. In the 4th and 5th lines, two objects smoke0 and
smoke1 are created which contain the birth weights of the smoking and nonsmoking group,
respectively. On the 6th line the right one-sided two-sample t test is executed, and the output
is printed in the 7th line. Next the two constrained hypotheses for the confirmatory test are
specified on the parameter difference (which is the label of the mean difference between the
groups in a two samples t test) (hypotheses are separated by a semi-colon “;”), and stored
in the object constraints1 on the 8th line. Subsequently, the Bayesian hypothesis tests are
executed using the BF() function on the 9th line. The argument complement = FALSE is
used so that the complement hypothesis, which in this case would assume that the difference
in means is smaller than 0, is omitted in the confirmatory test. Furthermore equal prior
probabilities of 1

2 are set for the two hypotheses H1 and H2 in the confirmatory test (the
default setting)1. Finally the output summary of the Bayesian tests are printed on the 10th
line.
First we discuss the output of the classical test using the traditional significance level of 0.05
(controlling the unconditional type I error probability at 0.05):

1The same hypothesis test could be executed when using the prior argument instead of the complement
argument where the complement hypothesis would have zero prior probability and the other two hypothe-
ses would have prior probability of .5: BF(ttest1, hypothesis = constraints1, prior.hyp = c(0.5, 0.5,
0), complement = TRUE).
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Two Sample t-test

data: smoke0 and smoke1
t = 2.6529, df = 187, p-value = 0.004333
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
106.9528 Inf

sample estimates:
mean of x mean of y
3055.696 2771.919

As the p value is smaller than the significance level of 0.05, there is enough evidence in
the data to reject the null hypothesis in favor of the one-sided alternative which assumes
that the average birth weight is larger for the nonsmoking group. Even though a small
p value is obtained of 0.004333, the (unconditional) probability of incorrectly rejecting the
null hypothesis is equal to the prespecified significance level of 0.05 as p values cannot be
interpreted as error probabilities (Hubbard and Bayarri 2003).
Next we discuss the results of the exhaustive exploratory test (the first part of the summary
output) which are given by

Bayesian hypothesis test
Type: exploratory
Object: t_test
Parameter: difference in means
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(=0) Pr(<0) Pr(>0)

difference 0.204 0.003 0.793

In the exhaustive test the hypothesis assuming a positive difference (i.e., a larger average
birth weight for the nonsmoking group) receives the largest posterior probability. This is in
accordance with the positive t value (t = 2.6529, as can be seen from the classical test).
The Bayes factor of a positive effect against no effect can be computed via

R> BF1$BFtu_exploratory[3]/BF1$BFtu_exploratory[1]

which yields B31 = 3.896071. Hence there is some positive evidence in the data in favor of a
positive difference against no difference. Note that a negative difference receives hardly any
posterior support, which confirms our prior intuition that this hypothesis cannot be explained
by any medical arguments.
Next we discuss the results of the confirmatory test of H1, which assumes that there is no
group difference, versus H2, which assumes a positive group difference (a larger mean for the
nonsmoking group). The results of confirmatory tests are more extensive than the standard
exploratory tests:

Bayesian hypothesis test
Type: confirmatory
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Object: t_test
Parameter: difference in means
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(hypothesis|data)

H1 0.204
H2 0.796

Evidence matrix (Bayes factors):
H1 H2

H1 1.000 0.257
H2 3.896 1.000

Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 0 1.0 0 1.000 0.511 1.000 0.511 0.204
H2 1 0.5 1 0.996 1.000 1.991 1.991 0.796

Hypotheses:
H1: difference=0
H2: difference>0

Similar as in the exhaustive test there is most evidence for a positive difference (H2) against no
difference (H1) with a Bayes factor of B21 = 3.896. Equivalently, the evidence for H1 against
H2 equals B12 = 1/B21 = 0.257, which follows from the symmetry property of the Bayes
factor. Because the prior probabilities for the hypotheses are equal, the Bayes factor is equal
to the posterior odds: P(H2|y)

P(H1|y) = 0.796
0.204 = 3.896 = B21. Notice that the posterior probability of

the null hypothesis of 0.204 is considerably larger than the p value of 0.004333. This illustrates
that classical p values tend to overestimate the evidence against a null hypothesis (Sellke et al.
2001). For this reason, there has been a recent call for using a smaller significance level in
applied scientific research than the traditional cut-off value of 0.05 (Benjamin et al. 2018).

Statistical elaborations: Discussion of the Specification table

The Specification table presents the different quantities of the extended Savage-Dickey
density ratio in Equation 5. To understand how these values are computed, we plotted the
unconstrained posterior for the difference parameter θ, which follows a Student t distri-
bution with location 283.8, scale 107.0, and 187 degrees of freedom, and the unconstrained
fractional prior, which follows a Student t distribution with location 0, scale 1407.7, and 1
degree of freedom, i.e., a Cauchy distribution, in Figure 12. The unconstrained marginal pos-
terior is obtained by updating the standard independence Jeffreys prior with the information
in the observed data (n1 = 115 and n2 = 74). Note that this posterior results in identi-
cal Bayesian credible intervals as classical confidence intervals. The unconstrained fractional
prior is obtained by updating the independence Jeffreys prior with a minimal fraction of the
data which contains the information of three observations (as the three unknown parame-

2Technical details to derive these distributions can be found by following the steps in Appendix A.1.
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Figure 1: Unconstrained t distributed posterior for the difference in means θ based on the
birthwt data (solid line), and the unconstrained fractional Cauchy prior (dashed line). Note
that Pu(θ > 0) = 0.5, Pu(θ > 0 | y) = 0.996, πu(θ = 0) = 2.261e−4, and πu(θ = 0 | y) =
1.156e−4.

ters: group mean 1 µ1, group mean 2 µ2, and the common within group variance σ2). The
prior is adjusted so that the resulting Cauchy prior is centered around the null value θ = 0.
Under this adjusted fractional prior, (i) positive and negative effects are equally likely, and
(ii) small effects are more likely than large effects. These are important properties for the
prior in default Bayesian hypothesis testing (Jeffreys 1961). Because the prior is centered at
the null value, the prior probability that the order (or one-sided) constraints hold under the
unconstrained full model reflects the relative complexity (or relative size) of the constrained
subspace under a hypothesis (see also Mulder et al. 2010).
The relative complexity of the one-sided hypothesis H2 can be found in the column complex>
which is equal to the prior probability that the one-sided constraint θ > 0 holds under the
unconstrained adjusted fractional prior, which is equal to 0.5 (as the prior is centered at the
test value of 0; Figure 1, dashed line). This value quantifies the relative size of the constrained
parameter space as the one-sided hypothesis covers half of the parameter space. Furthermore
the relative fit of the one-sided hypothesis, in the column fit>, quantifies the relative fit of
the one-sided constraint, which is calculated as the posterior probability that the constraint
holds, which is equal to 0.996 (Figure 1, solid line). Consequently, following Equation 5,
the Bayes factor of the one-sided hypothesis H2 against the unconstrained full model equals
Bo

2u = .996
.500 = 1.991, as can be seen in the column labeled BF>. Note that Be

2u = 1 as H2 does
not contain equality constraints.
Furthermore, the relative complexity and the relative fit of the equality hypothesis, in the
column complex= and fit=, respectively, are equal to the probability densities at θ = 0 for the
unconstrained fractional prior and the unconstrained posterior, which are rounded to 0 with
three decimals in the Specification Table. The unrounded density values are 1.156e−4
and 2.261e−4 for the posterior and prior, respectively. Consequently, following Equation 5,
the Bayes factor of the equality hypothesis H1 against the unconstrained full model equals
Be

1u = 1.156e−4
2.261e−4 = 0.511, as can be seen in the column labeled BF=. This Bayes factor of

0.511 for the equality hypothesis against the unconstrained hypothesis can also be seen from
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Figure 1 as the posterior density at the null value is about half of the prior density at the
null value. Note that Bo

1u = 1 as H1 does not contain order constraints. We hope that these
elaborations shed more insights about the nature of the procedure using Equation 5.

4.2. Analysis of variance

Statistical model and exploratory hypothesis test

(Multivariate) analysis of (co)variance ((M)AN(C)OVA) is performed when the interest is in
testing group means using dummy group variables under a (multivariate) normal linear model,
possibly by correcting for certain covariates. To perform statistical hypothesis tests under this
class of models, first a model needs to be fit using the aov(), maov(), or manova() function.
Subsequently, generalized adjusted fractional Bayes factors (Section A.1) are computed on
the fitted object using the BF() function from BFpack.
If the factors are modeled using dummy (0, 1) variables3, the exploratory analysis tests
whether the effects of the dummy variables belonging to a certain factor equal to zero or not,
and whether the effects of the dummy variables belonging to each interaction effect equal zero
or. For example, if we consider a 2-way ANOVA model with two factors having two levels
and an interaction effect,

yi = µ+ δ1xi1 + δ2xi2 + δ12xi1xi2 + εi, where εi ∼ N(0, σ2),

where xi1 and xi2 are dummy (0, 1) variables for the first and second factor, respectively, so
that δ1, δ2, and δ12 capture the contribution of the first factor, the contribution of the second
factor, and the contribution of the interaction effect of the two factors, respectively, and σ2

is the common within groups variance, a nuisance parameter. The exploratory analysis then
executes the following hypothesis tests:

effect 1 : H1 : δ1 = 0 against H2 : δ1 6= 0
effect 2 : H1 : δ2 = 0 against H2 : δ2 6= 0

interaction effect : H1 : δ12 = 0 against H2 : δ12 6= 0.

In the output H1 and H2 will be labeled as “no effect” and “complement”, respectively.
Note that in the case of factors with more levels (e.g., more than two groups), it would be
tested whether all dummy effects belonging to a factor would be zero against an alternative
full model. In the case of a multivariate model (e.g., MANOVA), the null hypothesis would
assume that the dummy effects are zero across all dimensions of the dependent variable.

Confirmatory hypothesis test on numerical judgment

In experiment “4a” on numerical judgments of participants reported by Janiszewski and Uy
(2008), the outcome variable was the amount by which a given anchor price for a television
differed from the price estimated by a participant (expressed by means of a z score), and
the two factors where (1) whether the anchor price was rounded, e.g., $5000, or precise,
e.g., $4989 (anchor = rounded or precise, respectively); and (2) whether the participants

3The factors are modeled using dummy (0, 1) variables when contrasts are all set to "contr.treatment"
in the aov object.
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received a suggestion that the estimated price is close to the anchor value or whether they
did not receive this suggestion (motivation = low or high, respectively). An example of a
question, with anchor = rounded and motivation = low, was: “The retail price of a TV is
$5000 (rounded). The actual price is only slightly lower than the retail price. Can you guess
the price?”. Alternatively, by changing “$5000” to “$4989” in the question a precise anchor
price is obtained. By changing “slightly lower” to “lower” a question with a high motivation
is obtained.
Given the above parameterization, let the reference group be anchor = precise and
motivation = high, so that the combinations of the dummy variables correspond to the
group means as follows:

dummy variables anchor motivation
xi1 = 0, xi2 = 0 precise high
xi1 = 1, xi2 = 0 rounded high
xi1 = 0, xi2 = 1 precise low
xi1 = 1, xi2 = 1 rounded low

It can be argued that participants who receive a high motivation are likely to give a lower
estimate of the tv price, and that participants who see a rounded price may also give a
lower price estimate. Moreover the estimated price may be even lower in the combined high
and rounded condition. As the outcome of computed based on the anchor price minus the
estimated price, we can translate this to the following confirmatory test where H1 corresponds
to the anticipated directional effect, H2 is the traditional null hypothesis of no effect, and H3
is the complement hypothesis:

H1 : δ1 > 0, δ2 < 0, δ12 < 0
H2 : δ1 = 0, δ2 = 0, δ12 = 0
H3 : neither H1, nor H2.

Analyses using BFpack
First the 2×2 ANOVA model is fit using the aov() function. The fitted model is then plugged
into the BF() function:

R> aov2 <- aov(price ~ anchor * motivation, data = tvprices)
R> summary(aov2)
R> constraints2 <- "anchorrounded > 0 & motivationlow < 0 &
+ anchorrounded:motivationlow < 0; anchorrounded = 0 &
+ motivationlow = 0 & anchorrounded:motivationlow = 0"
R> set.seed(1234)
R> BF2 <- BF(aov2, hypothesis = constraints2)
R> summary(BF2)

The output of the classical analysis (when running summary(aov2) in the second line) yields:

Df Sum Sq Mean Sq F value Pr(>F)
anchor 1 8.575 8.575 66.877 4.48e-11 ***
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motivation 1 13.850 13.850 108.015 1.38e-14 ***
anchor:motivation 1 0.885 0.885 6.899 0.0112 *
Residuals 55 7.052 0.128
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Using a traditional significance level of 0.05, the p values suggest that there is enough evidence
in the data to reject the null hypotheses of no effect of anchor, no effect of motivation, and
no interaction effect of anchor:motivation. The first part of the output (when running
summary(BF2)) gives the output of the exploratory hypothesis tests in a Bayesian framework:

Bayesian hypothesis test
Type: Exploratory
Object: aov
Parameter: group means
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(no effect) Pr(complement)

anchor 0.000 1.000
motivation 0.000 1.000
anchor:motivation 0.251 0.749

Here Pr(no effect) denotes the posterior probabilities of the (“null”) hypotheses of no effect
of the dummy variables belonging to the effect of anchor, the effect of motivation, and the
interaction effect anchor:motivation, denoted by H1 above. Furthermore Pr(complement)
denotes the posterior probabilities of the alternative (full) models, denoted by H2 above. The
results show clear support that an effect is present for the dummy effects of the anchor factor
and the motivation factor (with posterior probabilities of approximately 1). Furthermore,
there is some support that an interaction effect between the two factors is present (with a
posterior probability of 0.749, equivalent to a Bayes factor of 0.749

0.251 ≈ 3). As the evidence is
very mild however, more data would need to be collected in order to draw a more decisive
conclusion regarding the existence of an interaction effect. From a Bayesian point of view,
this illustrates that classical p values tend to overestimate the evidence against a precise null
hypothesis. See also Sellke et al. (2001) for an interesting discussion on this property. Due to
this overestimation there has been a recent call to use smaller significance levels in classical
significance tests (Benjamin et al. 2018).
In the second part of the output, the results of the confirmatory tests are given which yield:

Bayesian hypothesis test
Type: confirmatory
Object: aov
Parameter: group means
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(hypothesis|data)
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H1 0.999
H2 0.000
H3 0.001

Evidence matrix (Bayes factors):
H1 H2 H3

H1 1.000 1.143559e+17 1963.526
H2 0.000 1.000000e+00 0.000
H3 0.001 5.824008e+13 1.000

Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 1.000 0.083 1 0.994 1 11.933 11.933 0.999
H2 0.156 1.000 0 1.000 0 1.000 0.000 0.000
H3 1.000 0.917 1 0.006 1 0.006 0.006 0.001

Hypotheses:
H1: anchorrounded>0&motivationlow<0&anchorrounded___X___motivationlow<0
H2: anchorrounded=0&motivationlow=0&anchorrounded___X___motivationlow=0
H3: complement

The posterior probabilities (which are based on equal prior probabilities of 1
3 for each of

the three hypotheses) show that the joint one-sided hypothesis H1 which assumed directional
effects of anchor, motivation, and anchor:motivation is clearly most plausible after observ-
ing the data. The Bayes factors that are shown in the Evidence matrix show an equivalent
picture, i.e., B12 = 1.1436e17 and B13 = 1963.5, which implies decisive evidence for H1
against both H2 and H3. The different quantities in the extended Savage-Dickey density ra-
tio in Equation 5 can be found in the Specification table. For hypotheses with only order
(equality) constraints the measures for complex= and fit= (complex> and fit>) are set to 1.
As can be seen for instance the posterior and prior probability that the one-sided constraints
of H1 hold under the unconstrained full model are equal to 0.994 and 0.083, respectively.
This implies a good fit of the order constrained of H1 in combination with a relatively small
subspace that is covered by the constraints. As Bayes factors function as an Occam’s razor
this suggests a large support for H1 given the data. Similarly as the complement hypothesis
H3 covers the remaining subspace, the posterior and prior probability are equal to 1 minus
the posterior and prior probabilities for H1. Finally observe a poor relative fit of the equality
constraints of H2, which is approximately 0, as can be seen from the column labeled fit=.

Statistical elaborations: Analysis via the lm() function

Given the relationship between an ANOVA model and a linear regression model, it is also
possible to perform the first step using the lm() function instead of the aov() function. In
that case, the output object is of class ‘lm’ instead of class ‘aov’. The above exploratory tests
are then replaced by exhaustive tests of whether the separate coefficients in the model are zero,
negative, or positive (which is done by default for lm objects). This can be done as follows
(for illustrative purposes we omit the hypothesis argument so that only the exploratory tests
are executed):
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R> lm2 <- lm(price ~ anchor * motivation, data = tvprices)
R> summary(lm2)
R> BF2 <- BF(lm2)
R> print(BF2)

The classical analysis then gives the following significance results of the separate coefficients:

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.04000 0.09246 -0.433 0.6670
anchorrounded 1.02000 0.13075 7.801 1.84e-10 ***
motivationlow -0.72000 0.13307 -5.411 1.41e-06 ***
anchorrounded:motivationlow -0.49000 0.18656 -2.627 0.0112 *

and the exploratory Bayesian analysis gives the posterior probabilities of the coefficients:

Bayesian hypothesis test
Type: exploratory
Object: lm
Parameter: regression coefficients
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(=0) Pr(<0) Pr(>0)

(Intercept) 0.808 0.128 0.064
anchorrounded 0.000 0.000 1.000
motivationlow 0.000 1.000 0.000
anchorrounded:motivationlow 0.144 0.851 0.005

Because both factors only have two levels each, the results of the exploratory Bayesian anal-
yses are very similar with the earlier exploratory analyses based using the aov object. An
important difference is that when using the lm() function, we also test one-sided hypothe-
ses on the separate coefficients, while the exploratory test on an object of class ‘aov’ has a
two-sided nature where all effects of the dummy variables belonging to a certain factor are
either equal to zero or not. Another important difference is that in the exhaustive exploratory
tests of a lm object, the prior probability of the “zero effect” hypotheses equals 1

3 (because
every test considers three hypotheses which are assumed to be equally likely) while the prior
probabilities of the “zero effect” hypotheses in the exploratory test on an aov object equal 1

2
(because every test considers two hypotheses which are assumed to be equally likely). De-
pending on the situation, users might prefer one analysis over the other. Of course users
can utilize the hypothesis argument and the prior.hyp argument to perform more specific
confirmatory hypothesis tests.

4.3. Testing group variances

Statistical model and exploratory hypothesis test
Besides (or in addition to) testing group means, there are also situations where the interest is
in testing the heterogeneity across populations. Equality and order constraints can be tested
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between group variances σ2 under normally distributed groups, i.e., N(µq, σ2
q ), under group

q, for q = 1, . . . , Q, where the group means are treated as nuisance parameters, using the
generalized adjusted fractional Bayes factor. First the bartlett_test() function is used to
fit the model which is equivalent to the bartlett.test() function with the addition that the
the sample variances are also contained in the fitted object. Next the generalized adjusted
fractional Bayes factors (Section A.2) are computed when running BF() on the object, which
is based on the methodology of (Böing-Messing, Van Assen, Hofman, Hoijtink, and Mulder
2017b).
For the exploratory test it is tested whether the group variances are homogeneous or not, i.e.,

H1 : σ2
1 = . . . = σ2

Q versus H2 : not H1.

For a confirmatory test equality/order constrained hypotheses on the group variances can be
specified using the hypothesis argument.

Confirmatory hypothesis test in neuropsychology
Silverstein, Como, Palumbo, West, and Osborn (1995) conducted a psychological study to
compare the attentional performances of 17 Tourette’s syndrome (TS) patients, 17 ADHD
patients, and 17 control subjects who did not suffer from TS or ADHD. The participants
were shown a total of 120 sequences of either 3 or 12 letters. Each sequence contained ei-
ther the letter T or the letter F at a random position. Each sequence was presented for 55
milliseconds and afterwards the participants had to indicate as quickly as possible whether
the shown sequence contained a T or an F. After a participant completed all 120 sequences,
his or her accuracy was calculated as the percentage of correct answers. In this section, we
are interested in comparing the variances of the accuracies in the three groups. Research has
shown that ADHD patients tend to be more variable in their attentional performances than
subjects who do not suffer from ADHD (e.g., Kofler et al. 2013; Russell et al. 2006). It is less
well documented whether TS patients are less or more variable in their attentional perfor-
mances than healthy control subjects. We will therefore test the following set of hypotheses
to investigate whether TS patients are as variable in their attentional performances as either
ADHD patients or healthy controls (C):

H1 : σ2
C = σ2

TS < σ2
ADHD

H2 : σ2
C < σ2

TS = σ2
ADHD

H3 : σ2
C = σ2

TS = σ2
ADHD

H4 : not H1, H2, H3.

The complement is included to safeguard against the data supporting neither of the first three
constrained hypotheses.

Analyses using BFpack
Silverstein et al. (1995) reported the following sample variances of the accuracies in the three
groups: s2

C = 15.52, s2
TS = 20.07, and s2

ADHD = 38.81. The object attention from BFpack
contains hypothetically generated data having these descriptive statistics. First the data
are analyzed using the bartlett_test() function, and next, the multiple hypothesis test is
executed by plugging the fitted object in the BF() function together with the constrained
hypotheses on the variances:
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R> bartlett3 <- bartlett_test(x = attention$accuracy, g = attention$group)
R> print(bartlett)
R> get_estimates(bartlett3)
R> constraints3 <- "Controls = TS < ADHD; Controls < TS = ADHD;
+ Controls = TS = ADHD"
R> set.seed(358)
R> BF3 <- BF(bartlett3, hypothesis = constraints3)
R> summary(BF3)

The third line was added for users to see the labels of the variances, which yields ADHD,
Controls, and TS, on which the constrained hypotheses can be formulated. We use equal
prior probabilities for the hypotheses by omitting the argument prior.hyp in the call of the
BF() function.
The output of the classical test (when calling print(bartlett)) looks as follows:

Bartlett test of homogeneity of variances

data: attention$accuracy and attention$group
Bartlett's K-squared = 3.6187, df = 2, p-value = 0.1638

The p value is equal to 0.1638. Thus the hypothesis of homogeneity of variances cannot be
rejected using a significance level of 0.05. This result however does not imply that there is
evidence in the data for the null hypothesis of homogeneity of variances because p values
cannot be interpreted as measures of evidence in favor of a null. The reason is that p values
are uniformly distributed in the interval (0, 1) when the null is true.
The results of the Bayesian exploratory test of homogeneity of variances (first part when
calling summary(BF3)) yield:

Bayesian hypothesis test
Type: Exploratory
Object: bartlett_htest
Parameter: group variances
Method: generalized adjusted fractional Bayes factor

homogeneity of variances no homogeneity of variances
0.803 0.197

Hence the posterior probability that the group variances are equal to each other is equal to
0.803 given the observed data. The Bayes factor would then be equal to 0.803

0.197 ≈ 4, which
(equivalently) suggests some positive evidence for homogeneity of variances.
The output for the confirmatory hypothesis test looks as follows:

Bayesian hypothesis test
Type: Confirmatory
Object: bartlett_htest
Parameter: group variances
Method: generalized adjusted fractional Bayes factor
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Posterior probabilities:
Pr(hypothesis|data)

H1 0.426
H2 0.278
H3 0.238
H4 0.058

Evidence matrix (Bayes factors):
H1 H2 H3 H4

H1 1.000 1.530 1.791 7.315
H2 0.654 1.000 1.171 4.781
H3 0.558 0.854 1.000 4.083
H4 0.137 0.209 0.245 1.000

Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 NA 0.579 NA 0.970 4.363 1.677 7.315 0.426
H2 NA 0.423 NA 0.913 2.215 2.158 4.781 0.278
H3 NA 1.000 NA 1.000 4.083 1.000 4.083 0.238
H4 NA 1.000 NA 1.000 1.000 1.000 1.000 0.058

Hypotheses:
H1: Controls=TS<ADHD
H2: Controls<TS=ADHD
H3: Controls=TS=ADHD
H4: complement

Hypothesis H1 receives largest posterior probability given the observed data, but H2 and H3
are viable competitors. It appears that even the complement H3 cannot be ruled out entirely
given a posterior probability of 0.058. As equal prior probabilities are used for the hypotheses,
the same conclusions can be drawn based on the Bayes factors in the Evidence matrix. Thus,
the results indicate that TS are as heterogeneous in their attentional performances as healthy
control in this specific task, but further research would be required to obtain more conclusive
evidence.
Finally note that Bayes factors on hypotheses with equality constraints on variances cannot
be formulated as a Savage-Dickey density ratio (Appendix A.2). Therefore the numerator
and the denominator of Be

tu in Equation 5 are not available, the columns of complex= and
fit= are left empty in the Specification table.

4.4. Logistic regression

Statistical model and exploratory hypothesis test
The generalized linear model is a flexible generalization of the normal linear regression model
where the outcome variable has an error that follows a non-normal distribution (McCullagh
and Nelder 1989). The logistic regression model is one of the most commonly used generalized
linear models where the outcome variable is a binary variable. A logit function of the “success”
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probability of the outcome variable is assumed to follow a linear function of the predictor
variables, β0 + β1x1 + . . .+ βQxq, where βq denotes the effect of the q predictor variable, xq,
on the outcome variable, and β0 denotes the intercept.
First the glm() function is used to fit the logistic regression model for a given data set. By
plugging in the resulting glm object into BF(), adjusted fractional Bayes factors are computed
based on Gaussian approximations and minimal fractions (Gu et al. 2017). For technical
details we refer the interested reader to Section A.3.
By default exploratory exhaustive tests are executed of whether each effect is zero, negative,
or positive, assuming equal prior probabilities, i.e.,

H1 : βq = 0 versus H2 : βq < 0 versus H3 : βq > 0,

for q = 1, . . . , Q. Competing equality and order constraints on the β’s can be tested in a
confirmatory test using the hypothesis argument.

Confirmatory hypothesis test in forensic psychology

The presence of systematic biases in the legal system runs counter to society’s expecta-
tion of fairness. Moreover such biases can have profound personal ramifications, and the
topic therefore warrants close scrutiny. Wilson and Rule (2015) examined the correlation
between perceived facial trustworthiness and criminal-sentencing outcomes (data available at
https://osf.io/7mazn/, BFpack contains a simulated version of these data having the same
descriptives). In Study 1 photos of inmates who had been sentenced to death (or not) were
rated by different groups of participants on trustworthiness, “Afrocentricity” (how stereotyp-
ical “black” participants were perceived as), attractiveness and facial maturity. Each photo
was also coded for the presence of glasses/tattoos and facial width-to-height ratio. A logistic
regression with sentencing as outcome was fitted to the predictors.
Previous research had shown that the facial width-to-height ratio (fWHR) has a positive effect
on perceived aggression and thus may also have a positive effect on sentencing outcomes. In
addition, perceived Afrocentricity had been shown to be associated with harsher sentences
(Wilson and Rule 2015). In the first hypothesis it was expected that all three predictors have
a positive effect on the probability of being sentenced to death. Additionally, we might expect
lack of perceived trustworthiness to have the largest effect. In the second hypothesis it was
assumed that only trustworthiness has a positive effect. Finally, the complement hypothesis
was considered. The hypotheses can then be summarized as follows

H1 : βtrust > (βfWHR, βafro) > 0
H2 : βtrust > βfWHR = βafro = 0
H3 : neither H1, nor H2.

Analyses using BFpack
Before fitting the logistic regression we reverse-coded the trustworthiness scale and standard-
ized it to be able to compare the magnitude the three effects. The data matrix has the name
of wilson in BFpack. The exploratory tests and the confirmatory test are executed by plug-
ging in the fitted glm object and the constrained hypotheses in the BF() function. First the
full logistic regression model is fitted, and then the hypothesis tests are executed:

https://osf.io/7mazn/
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R> glm4 <- glm(sent ~ ztrust + zfWHR + zAfro + glasses + attract +
+ maturity + tattoos, family = binomial(), data = wilson)
R> summary(glm4)
R> set.seed(123)
R> constraints4 <- "ztrust > (zfWHR, zAfro) > 0; ztrust > zfWHR = zAfro = 0"
R> BF4 <- BF(glm4, hypothesis = constraints4)
R> summary(BF4)

The results of the classical test (when running summary(glm4)) yields (where we only print
the table of estimates):

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.78886 0.60300 1.308 0.1908
ztrust 0.38594 0.08496 4.542 5.56e-06 ***
zfWHR 0.37008 0.08450 4.380 1.19e-05 ***
zAfro -0.18071 0.07183 -2.516 0.0119 *
glasses 0.39064 0.21155 1.847 0.0648 .
attract -0.03131 0.14514 -0.216 0.8292
maturity -0.14631 0.08732 -1.676 0.0938 .
tattoos 1.31579 0.81487 1.615 0.1064

Next we compare these results with the results of the Bayesian exploratory tests, which yield
(first part when running summary(BF4):

Bayesian hypothesis test
Type: Exploratory
Object: glm
Parameter: general parameters
Method: adjusted fractional Bayes factors using Gaussian approximations

Posterior probabilities:
Pr(=0) Pr(<0) Pr(>0)

(Intercept) 0.853 0.014 0.133
ztrust 0.000 0.000 1.000
zfWHR 0.001 0.000 0.999
zAfro 0.365 0.631 0.004
glasses 0.712 0.009 0.278
attract 0.930 0.041 0.029
maturity 0.770 0.219 0.011
tattoos 0.787 0.011 0.202

These results show which hypothesis (either no effect, a negative effect, or a positive effect)
is most plausible for each coefficient given the observed data. When comparing the posterior
probabilities with the two-tailed p values from the classical analyses, we see that smaller
p values correspond to smaller posterior probabilities for the null hypothesis of “no effect”
(column Pr(=0)). As was argued by Sellke et al. (2001), however, classical p values tend
to overestimate the evidence against an equality constrained null hypothesis. For example
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based on the two-tailed p of zAfro, which is equal to 0.0119, it would be concluded that there
is enough evidence to reject the null when using a significance level of 0.05. The posterior
probability of a zero effect for zAfro however is (still) 0.365, and thus, concluding that the
effect is nonzero would imply that there is a conditional error probability of about 0.365 to
draw the wrong conclusion given the observed data, which is quite large. This is one of the
motivations for the recent call for using more conservative significance levels when interpreting
p values (Benjamin et al. 2018).
Now we discuss the results of the confirmatory test, which is of main interest. The output is
given by

Bayesian hypothesis test
Type: Confirmatory
Object: glm
Parameter: general parameters
Method: adjusted fractional Bayes factors using Gaussian approximations

Posterior probabilities:
Pr(hypothesis|data)

H1 0.071
H2 0.002
H3 0.927

Evidence matrix (Bayes factors):
H1 H2 H3

H1 1.000 33.066 0.076
H2 0.030 1.000 0.002
H3 13.133 434.246 1.000

Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 1.000 0.037 1 0.003 1.000 0.079 0.079 0.071
H2 0.106 0.500 0 1.000 0.001 2.000 0.002 0.002
H3 1.000 0.963 1 0.997 1.000 1.035 1.035 0.927

Hypotheses:
H1: ztrust>(zfWHR,zAfro)>0
H2: ztrust>zfWHR=zAfro=0
H3: complement

In the output we see that the complement receives most support. This can also be concluded
based on the posterior probabilities. The evidence matrix shows that the complement hypoth-
esis (H3) receives about 13 times more support than the second best hypothesis (H1). The
fact that none of the two anticipated hypotheses were supported by the data indicates that
the theories are not yet well-developed. Closer inspection of the beta-coefficients reveals that
this is largely driven by the negative effect between perceived Afrocentricity and sentencing
harshness (β̂zAfro = −0.18071). This unexpected result is discussed further by Wilson and
Rule (2015) in their supplementary materials (doi:10.1177/0956797615590992).

https://doi.org/10.1177/0956797615590992
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Statistical elaborations: Bayesian exploratory tests via classical analysis output

The exploratory Bayesian tests can also be executed using the results of a classical significance
test via the BF.default (which calls the approximate adjusted fractional Bayes factor) by
plugging in the estimates, the error variances, and the sample size (Section 3):

R> ct <- lmtest::coeftest(glm4)
R> BF(ct[,1], Sigma = diag(ct[,2]^2), n = attr(ct, "nobs"))

This is possible as the exploratory tests of the separate coefficients only needs the separate
error variances, and not the entire error covariance matrix (which, by default, is not contained
in the ct object), because for every separate tests the remaining parameters are treated as
nuisance parameters and are thus integrated out. Thus the parameters cannot be tested
against each other based on the default output of the function coeftest().

4.5. Multivariate linear regression

Statistical model and exploratory hypothesis test

Multivariate normal linear regression models are useful for better understanding how a set
of K predictor variables affect P outcome variances when the error follows a multivariate
normal error with unknown covariance matrix:

yip = µp + β1pxi1 + . . .+ βKpxiK + εip,

for the i-th observation of the p-th outcome variable, for p = 1, . . . , P , where (εi1, . . . , εiP )′ ∼
N(0,Σ), where Σ is an unknown error covariance matrix, and where βkp denotes the effect
of the k-th predictor variable on the p-th outcome variable, for i = 1, . . . , n. First lm can be
used to fit the multivariate normal linear regression model for a given data set. Subsequently
Bayesian hypothesis tests are executed using generalized adjusted fractional Bayes factors
using BFpack (Section A.1).
By default exploratory exhaustive tests are executed of whether each effect is zero, negative,
or positive, assuming equal prior probabilities, i.e.,

H1 : βkp = 0 versus H2 : βkp < 0 versus H3 : βkp > 0,

for k = 1, . . . ,K, and p = 1, . . . , P . In BFpack, the names of the parameters have the
following form. If a predictor variable has name x1 and a dependent variable has name y1,
then the effect of this predictor variable on this dependent variable is labeled as x1_on_y1.
By running the get_estimates() function on the multivariate lm object (‘mlm’), a vector is
obtained containing the parameter names. These parameter names can be used for formulated
constrained hypotheses using the hypothesis argument, as discussed next.

Confirmatory hypothesis test in fMRI studies

It is well established that the fusiform facial area (FFA), located in the inferior temporal
cortex of the brain, plays an important role in the recognition of faces. This data comes
from a study on the association between the thickness of specific cortical layers of the FFA
and individual differences in the ability to recognize faces and vehicles (McGuigin, Newton,
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Tamber-Rosenau, Tomarken, and Gauthier 2020). High-resolution fMRI was recorded from
13 adult participants, after which the thickness of the superficial, middle, and deep layers of
the FFA was quantified for each individual. In addition, individual differences in face and
vehicle recognition ability were assessed using a battery of tests.
In this example, two hypotheses are of main interest. In a recent study, McGuigin, Van
Gulick, and Gauthier (2016) found that individual differences in the overall thickness of the
FFA are negative correlated with the ability to recognize faces but positively correlated with
the ability to recognize cars. To elaborate, consider a multivariate multiple regression model
model with cortical thickness measures for the superficial, middle, and deep layers as three
repeated measures for each participant, and facial recognition ability and vehicle recognition
ability as two dependent variables.
Hypothesis H1 is a main effects only model specifying that only main effect terms for face and
vehicle are sufficient to predict the thickness of layers. The absence of layer × face or layer
× vehicle interaction terms means that the relations between face and vehicle recognition
are invariant across cortical layers. This implies that regression coefficients between face
recognition and cortical thickness measures are expected to be negative, coefficients between
vehicle recognition and cortical thickness measures are expected to be positive, and no layer-
specific effect is expected for either faces or vehicles.
HypothesisH2 is based on prior findings concerning the early development of facial recognition
abilities and the more rapid development of the deep layer of the FFA. Here it is assumed
that the negative effect between facial recognition and the cortical thickness would be more
pronounced in the deep layer, relative to the superficial and middle layers.
A multiple hypothesis test is executed on these two hypotheses and the complement hypoth-
esis, which can be summarized as

H1 : βFace_on_Deep = βFace_on_Middle = βFace_on_Superficial < 0 < βV ehicle_on_Deep

= βV ehicle_on_Middle = βV ehicle_on_Superficial

H2 : βFace_on_Deep < βFace_on_Middle = βFace_on_Superficial < 0 < βV ehicle_on_Deep

= βV ehicle_on_Middle = βV ehicle_on_Superficial

H3 : neither H1, nor H2.

Analyses using BFpack
First a multivariate model is fitted with dependent variables Superficial, Middle, and
Deep and predictor variables Face and Vehicle. Subsequently the fitted model and the
constrained hypotheses on the effects (e.g., where Face_on_Deep refers to the effect of the
predictor variable Face on the dependent variable Deep) are plugged into the BF() function:

R> mlm5a <- lm(cbind(Superficial, Middle, Deep) ~ Face + Vehicle,
+ data = fmri)
R> summary(mlm5a)
R> constraints5a <- "Face_on_Deep = Face_on_Superficial = Face_on_Middle
+ < 0 < Vehicle_on_Deep = Vehicle_on_Superficial = Vehicle_on_Middle;
+ Face_on_Deep < Face_on_Superficial = Face_on_Middle < 0 <
+ Vehicle_on_Deep = Vehicle_on_Superficial = Vehicle_on_Middle"
R> set.seed(123)
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R> BF5a <- BF(mlm5a, hypothesis = constraints5a)
R> summary(BF5a)

The classical analyses (when running summary(mlm5a)) results in the following (slightly short-
ened) output:

Response Superficial :

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.03553 0.07998 12.948 1.42e-07 ***
Face -0.09314 0.10148 -0.918 0.380
Vehicle 0.13365 0.10782 1.240 0.243
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response Middle :

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.12380 0.09819 11.445 4.55e-07 ***
Face -0.05877 0.12460 -0.472 0.647
Vehicle 0.20051 0.13237 1.515 0.161
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Response Deep :

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.3668 0.1416 9.655 2.19e-06 ***
Face -0.6064 0.1796 -3.376 0.00705 **
Vehicle 0.2102 0.1909 1.101 0.29658
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Now we show the results of the exploratory Bayesian analyses using BFpack:

Bayesian hypothesis test
Type: Exploratory
Object: mlm
Parameter: regression coefficients
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(=0) Pr(<0) Pr(>0)

(Intercept)_on_Superficial 0.000 0.000 1.000
Face_on_Superficial 0.544 0.357 0.099
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Vehicle_on_Superficial 0.475 0.079 0.447
(Intercept)_on_Middle 0.000 0.000 1.000
Face_on_Middle 0.609 0.257 0.134
Vehicle_on_Middle 0.404 0.063 0.533
(Intercept)_on_Deep 0.000 0.000 1.000
Face_on_Deep 0.053 0.939 0.008
Vehicle_on_Deep 0.507 0.087 0.406

As can be seen the exploratory tests provide the posterior probabilities of each of the 9
coefficients to be zero, negative, or positive. Based on the posterior probabilities we see that
there is quite some posterior uncertainty regarding the effects of the two predictor variables
on the three dependent variables.
Next we discuss the results of the confirmatory hypothesis test, which is given by (to keep
the presentation concise we only print the posterior probabilities and the Bayes factors here):

Bayesian hypothesis test
Type: Confirmatory
Object: mlm
Parameter: regression coefficients
Method: generalized adjusted fractional Bayes factors

Posterior probabilities:
Pr(hypothesis|data)

H1 0.023
H2 0.975
H3 0.002

Evidence matrix (Bayes factors):
H1 H2 H3

H1 1.000 0.024 13.35
H2 42.391 1.000 565.93
H3 0.075 0.002 1.00

The evidence matrix reveals that there is clear evidence for H2 against H1 (B21 = 42.391)
and extreme evidence for H2 against H3 (B23 = 565.93). The same conclusion can be drawn
when looking at the posterior probabilities for the hypotheses. Based on these result we
would conclude that hypothesis H2 receives most support from the data. Moreover when we
would conclude that H2 is true, there is a probability of about 0.025 of drawing the wrong
conclusion given the observed data.

Statistical elaborations: Comparison with other approaches

One could attempt to test and compare these hypotheses using linear mixed effects models
software (e.g., the gls() function in the nlme package in R, Pinheiro, Bates, DebRoy, Sarkar,
and R Core Team 2021) with an appropriate covariance structure on the residuals to account
for within-subject dependence. Alternatively one could use a model selection framework like
that embodied in the BayesFactor package in R. While these approaches can separately test
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some components of a hypothesis, they are not well suited to jointly test all components of
a constrained hypothesis, such as H1 which specifies that all coefficients involving faces are
smaller than 0 and that all coefficients involving vehicles are larger than 0. BFpack on the
other hand allows researchers to test such hypotheses in a direct manner.

Statistical elaborations: Analyses using BFpack with missing observations

Missing data are ubiquitous in statistical practice. Properly handling missing data in model
selection and hypothesis testing problems has not received a lot of attention in the literature
as the focus generally lies on estimation problems in the presence of missing observations
Rubin (1996). However, properly handling missing observations is specifically challenging in
model selection and hypothesis testing problems due to model uncertainty and we need to
avoid possible biases towards a certain model or hypothesis. In a Bayesian framework the
natural approach is to use the posterior predictive distribution to impute missing data given
the observed data, and subsequently compute each marginal likelihood by averaging over the
imputed data. This can be computationally expensive when considering many models having
complex equality and order constraints on certain parameters.
For Bayes factors which can be expressed as an extended Savage-Dickey density ratio as in
Equation 5, the computation can be considerably cheaper. Interestingly we only need to
generate imputed data using the posterior predictive distribution under the unconstrained
full model (possibly including auxiliary variables) because the four elements in Equation 5
are all defined under the unconstrained model. Subsequently we can obtain each element
given the observed data by averaging over the obtained element from the complete imputed
data sets. This is explained in Appendix B. This procedure can be used when the missing
data are missing at random, similar as in estimation problems (Little and Rubin 2002). For
more details about the approach we refer the interested reader to Hoijtink, Gu, Mulder, and
Rosseel (2019b) and Mulder and Gu (2021). Below we illustrate (i) how to compute Bayes
factors in the case there are observations that are missing at random, and (ii) to illustrate
that multiple imputation using the posterior predictive distribution is preferred over list-wise
deletion as the latter results in more loss of statistical evidence.
Here we illustrate how Bayes factors can be obtained in the case of random missing observa-
tions in the fMRI data set when using the Bayes factors given in Equation 5 using BFpack.
For illustration purposes a slightly simpler constrained hypothesis test is considered to reduce
computation time, which is given by

H1 : βFace_on_Deep = βFace_on_Middle = βFace_on_Superficial < 0
H2 : βFace_on_Deep < βFace_on_Middle = βFace_on_Superficial < 0
H3 : not H1, or H2.

These hypotheses are specified as follows:

R> constraints5b <-
+ "Face_on_Deep = Face_on_Superficial = Face_on_Middle < 0;
+ Face_on_Deep < Face_on_Superficial = Face_on_Middle < 0"

First the Bayes factors and posterior probabilities are obtained for this hypothesis test for
the complete data set:
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R> mlm5b <- lm(cbind(Superficial,Middle,Deep) ~ Face + Vehicle, data = fmri)
R> BF5b <- BF(mlm5b, hypothesis = constraints5b)
R> print(BF5b)

This results in posterior probabilities of 0.050, 0.927, and 0.023 for the two constrained
hypotheses and the complement hypothesis, respectively. The Bayes factor of the most sup-
ported hypothesis (H2) against the second most supported hypothesis (H1) equals B21 =
18.443.
Next 10 missing observations (out of 65 separate observations in total) are randomly generated
(missing at random):

R> fmri_missing <- fmri
R> set.seed(1234)
R> for(i in 1:10) {
+ fmri_missing[sample(1:nrow(fmri), 1), sample(1:ncol(fmri), 1)] <- NA
+ }

This results in 7 rows with at least one missing observation. Therefore listwise deletion would
leave us with only 6 complete observations (of the 13 rows in total). Even though list-wise
deletion is generally not recommended (Rubin 1987, 1996), for this illustration we compute
the Bayes factors and posterior probabilities based on these 6 complete data observations to
illustrate the loss of evidence as a result of list-wise deletion.

R> fmri_listdel <- fmri_missing[!is.na(apply(fmri_missing, 1, sum)),]
R> mlm5b_listdel <- lm(cbind(Superficial, Middle, Deep) ~ Face + Vehicle,
+ data = fmri_listdel)
R> BF5b_listdel <- BF(mlm5b_listdel, hypothesis = constraints5b)
R> print(BF5b_listdel)

This results in posterior probabilities of 0.010, 0.820, and 0.170 for the two constrained hy-
potheses and the complement hypothesis, respectively. As expected the posterior probability
of the hypothesis H2 which received most evidence in based on the complete data set, de-
creased from 0.927 to 0.820.
Now we illustrate that the loss of evidence is less using the posterior predictive distribution
which also uses the information of the partly observed cases. We first generate 500 imputed
data sets using mice from the mice package (Van Buuren and Groothuis-Oudshoorn 2021),
and then use BF() to get the measures of relative fit and relative complexity for the equality
and order constraints for the three hypotheses. These are be obtained from the element
BFtable_confirmatory of an object of class ‘BF’4 as follows:

R> M <- 500
R> library("mice")
R> mice_fmri <- mice :: mice(data = fmri_missing, m = M, meth = c("norm",
+ "norm", "norm", "norm", "norm"), diagnostics = FALSE, printFlag = FALSE)

4Note that the measures of relative fit and relative complexity can also be found in the Specification
table when calling the summary() function on an object of class ‘BF’ in the case of a confirmatory test on the
hypotheses specified in the hypothesis argument of the BF() function.
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R> relmeas_all <- matrix(unlist(lapply(1:M, function(m) {
+ mlm5b_m <- lm(cbind(Superficial, Middle, Deep) ~ Face + Vehicle,
+ data = mice::complete(mice_fmri, m))
+ BF5b_m <- BF(mlm5b_m, hypothesis = constraints5b)
+ c(BF5b_m$BFtable_confirmatory[, 1:4])
+ })), ncol = M)
R> relmeas <- matrix(apply(relmeas_all, 1, mean), nrow = 3)
R> row.names(relmeas) <- c("H1", "H2", "H3")
R> colnames(relmeas) <- c("comp_E", "comp_O", "fit_E", "fit_O")
R> BF_tu_confirmatory <- relmeas[,3] * relmeas[,4] / (relmeas[,1] *
+ relmeas[,2])
R> PHP <- BF_tu_confirmatory / sum(BF_tu_confirmatory)
R> print(PHP)

In the 11th line the averages are computed for the four different measures of relative fit and
relative complexity for the constrained hypotheses in Equation 5, across all 500 imputed data
sets. Appropriate names are given on lines 12 and 13 for illustrative purposes. Subsequently
in the 14th line, the Bayes factors of all constrained hypotheses against an unconstrained
alternative are computed using the Equation 5 based on the four different quantities (which
also holds for the generalized adjusted fractional Bayes factor; Section A.1). This results in
posterior probabilities of 0.048, 0.900, and 0.52 for the two constrained hypotheses and the
complement hypothesis, respectively. Thus the posterior probability for the most supported
hypothesis is still 0.900 (compared to 0.927 based on the complete data set), which is consid-
erably larger than the posterior probability of 0.820 which was obtained using the data set
after list-wise deletion.

4.6. Testing measures of association

Statistical model and exploratory hypothesis test
Measures of association play a central role in the applied sciences to quantify the degree
of association between the variables of interest, possibly while correcting for certain control
variables. The Pearson product-moment correlation coefficient is the most commonly used
measure of association which expresses the strength of the linear relationship between two
continuous variables. BFpack allows researchers to test complex hypotheses involving equality
and order constraints on dependent overlapping correlations, on dependent non-overlapping
correlations, and on independent correlations across independent groups, possibly, while cor-
recting for certain covariates. The methodology builds on the work of Mulder (2016) and
Mulder and Gelissen (2019).
It is assumed that the i-th observation of a P dimensional dependent variable follows a P -
variate normal distribution, yi ∼ N(Bxi,Σ), where Σ = diag(σ)Cdiag(σ), for observation i,
where xi denotes a vector of covariates of observation i (of which the first element is generally
a 1), B contains the corresponding unknown coefficients of these covariates, σ is a vector
of standard deviations, and C is the correlation matrix where the (p, q)-th element is the
association between the p-th and q-th variable. Writing the covariance matrix as a function
of a diagonal matrix of standard deviations, diag(σ), and the correlation matrix, C, is also
referred to as the separation strategy (Barnard, McCulloch, and Meng 2000).
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When the interest is testing correlations across J independent groups, the i-th observation in
group j is distributed as yij ∼ N(Bjxij , diag(σj)Cjdiag(σj)), with group specific coefficients,
Bj , standard deviations, σj , and correlation matrix, Cj , in group j = 1, . . . , J . In both cases,
joint uniform priors are used for the correlation matrices and improper Jeffreys priors are
used for the standard deviations and coefficients. Joint uniform priors for the correlations
in a correlation matrix have certain attractive properties which are not necessarily shared
by alternative proposals (Mulder and Gelissen 2019). Technical details on the implemented
Bayes factors for testing measures of association can be found in Section A.4.
First an unconstrained Bayesian correlation analysis needs to be executed using the cor_test()
function in BFpack. This function fits an unconstrained Bayesian model using joint uniform
priors for the correlation matrices (Mulder and Gelissen 2019). The resulting object of class
‘cor_test’ then needs to be plugged into the BF() function to perform Bayes factor tests of
constrained hypotheses on the correlations. These Bayes factors are based on uniform priors
for the free correlations under the constrained hypotheses. In the exploratory tests exhaustive
tests are executed on the correlations, i.e.,

H1 : ρjpq = 0 versus H2 : ρjpq < 0 versus H3 : ρjpq > 0,

for j = 1, . . . , J , and p < q.
In BFpack, the names of the correlations have the following form. In the case of a single group,
J = 1, and we consider two predictor variables with names, y1 and y2, the correlation between
these dependent variables has name y1_with_y2. In the case of J independent groups, with
J > 1, the correlation between y1 and y2 in group 1 has name y1_with_y2_in_g1. Again,
by running the get_estimates() function on the output of the cor_test object, a vector is
printed containing the correlation names. These parameter names can be used for formulated
constrained hypotheses using the hypothesis argument.

Confirmatory hypothesis test in neuropsychology
Schizophrenia is often conceptualized as a disorder of “dysconnectivity” characterized by dis-
ruption in neural circuits that connect different regions of the brain (e.g., Friston and Frith
1995). This data set (originally collected by Ichinose, Han, Polyn, Park, and Tomarken (2019))
can be used to test whether such dysconnection is manifested behaviorally as weaker correla-
tions among measures that we would expect to be highly correlated among non-schizophrenic
individuals. 20 patients suffering from schizophrenia (SZ group) and 20 healthy control (HC
group) participants were administered six measures of working memory. Ichinose et al. hy-
pothesized that each of the 15 correlations would be smaller in the schizophrenic group relative
to the control group, i.e.,

H1 : ρSZ,pq > ρHC,pq, for all 1 ≤ p < q ≤ 6
H2 : not H1.

H1 specifies that each correlation in the HC group is expected to be larger than the corre-
sponding correlation in the SZ group (i.e., a total of 15 order constraints were imposed). The
complement hypothesis H2 represents any pattern of correlations not consistent with H1.
As will be shown this application is an interesting case of how a joint order (or one-sided)
Bayesian approach can provide a more powerful and more appropriate test relative to alter-
native methods.
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Analyses using BFpack
First the data memory is split for the HC group (group 1) and the SZ group (group 2), and an
unconstrained Bayesian estimation analysis is performed using the cor_test() function from
BFpack. The group numbers follow from the order that the data matrices are plugged into
cor_test(). When printing the object, the 2.5%, 50%, and 97.5% quantiles of the posterior
distributions of the separate correlations are shown. Subsequently, the hypotheses are tested
using BF():

R> memoryHC <- subset(memory,Group=="HC")[,-7]
R> memorySZ <- subset(memory,Group=="SZ")[,-7]
R> Hmisc::rcorr(as.matrix(memoryHC))
R> Hmisc::rcorr(as.matrix(memorySZ))
R> set.seed(123)
R> cor6 <- cor_test(memoryHC,memorySZ)
R> print(cor6)
R> constraints6 <- "Del_with_Im_in_g1 > Del_with_Im_in_g2 &
+ Del_with_Wmn_in_g1 > Del_with_Wmn_in_g2 &
+ Del_with_Cat_in_g1 > Del_with_Cat_in_g2 &
+ Del_with_Fas_in_g1 > Del_with_Fas_in_g2 &
+ Del_with_Rat_in_g1 > Del_with_Rat_in_g2 &
+ Im_with_Wmn_in_g1 > Im_with_Wmn_in_g2 &
+ Im_with_Cat_in_g1 > Im_with_Cat_in_g2 &
+ Im_with_Fas_in_g1 > Im_with_Fas_in_g2 &
+ Im_with_Rat_in_g1 > Im_with_Rat_in_g2 &
+ Wmn_with_Cat_in_g1 > Wmn_with_Cat_in_g2 &
+ Wmn_with_Fas_in_g1 > Wmn_with_Fas_in_g2 &
+ Wmn_with_Rat_in_g1 > Wmn_with_Rat_in_g2 &
+ Cat_with_Fas_in_g1 > Cat_with_Fas_in_g2 &
+ Cat_with_Rat_in_g1 > Cat_with_Rat_in_g2 &
+ Fas_with_Rat_in_g1 > Fas_with_Rat_in_g2"
R> BF6 <- BF(cor6, hypothesis = constraints6)
R> summary(BF6)

First we present the estimates and the p values of the classical two-sided correlation tests in
the HC group (when running Hmisc::rcorr(as.matrix(memoryHC))):

Im Del Wmn Cat Fas Rat
Im 1.00 0.83 0.65 0.56 0.39 0.54
Del 0.83 1.00 0.50 0.39 0.32 0.47
Wmn 0.65 0.50 1.00 0.77 0.70 0.61
Cat 0.56 0.39 0.77 1.00 0.73 0.77
Fas 0.39 0.32 0.70 0.73 1.00 0.67
Rat 0.54 0.47 0.61 0.77 0.67 1.00

n= 20

P
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Im Del Wmn Cat Fas Rat
Im 0.0000 0.0018 0.0098 0.0911 0.0132
Del 0.0000 0.0249 0.0848 0.1667 0.0384
Wmn 0.0018 0.0249 0.0000 0.0006 0.0042
Cat 0.0098 0.0848 0.0000 0.0002 0.0000
Fas 0.0911 0.1667 0.0006 0.0002 0.0011
Rat 0.0132 0.0384 0.0042 0.0000 0.0011

and in the SZ group (when running Hmisc::rcorr(as.matrix(memorySZ))):

Im Del Wmn Cat Fas Rat
Im 1.00 0.35 -0.07 -0.28 -0.17 0.08
Del 0.35 1.00 -0.22 0.16 0.27 0.09
Wmn -0.07 -0.22 1.00 -0.05 0.01 -0.02
Cat -0.28 0.16 -0.05 1.00 0.22 -0.25
Fas -0.17 0.27 0.01 0.22 1.00 -0.14
Rat 0.08 0.09 -0.02 -0.25 -0.14 1.00

n= 20

P
Im Del Wmn Cat Fas Rat

Im 0.1353 0.7832 0.2313 0.4669 0.7431
Del 0.1353 0.3441 0.4909 0.2520 0.7122
Wmn 0.7832 0.3441 0.8237 0.9674 0.9450
Cat 0.2313 0.4909 0.8237 0.3541 0.2857
Fas 0.4669 0.2520 0.9674 0.3541 0.5452
Rat 0.7431 0.7122 0.9450 0.2857 0.5452

The posterior quantiles of the correlations (viewed when running print(cor6)) show a similar
pattern because joint uniform priors are used. Here we only show the posterior medians to
keep the output in the manuscript as concise as possible5.

Unconstrained Bayesian estimates

Group g1:

Posterior median:
Im Del Wmn Cat Fas Rat

Im
Del 0.729
Wmn 0.489 0.297
Cat 0.315 0.202 0.562

5Note that these numerical estimates may vary somewhat across different platforms (e.g., Windows, Mac,
Linux, etc.) even though the same seed is used. The reason is that certain functions for sampling values from
probability distributions may not result in identical draws across platforms resulting in small variations of
numerical estimates.
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Fas 0.213 0.148 0.499 0.535
Rat 0.338 0.283 0.389 0.568 0.534

Group g2:

Posterior median:
Im Del Wmn Cat Fas Rat

Im
Del 0.283
Wmn -0.066 -0.162
Cat -0.234 0.141 -0.042
Fas -0.104 0.213 0.020 0.148
Rat 0.048 0.086 -0.005 -0.205 -0.088

Note that medians are closer to 0 than modes for distributions that are skewed towards 0
which also explains the difference between the Bayesian posterior medians and the MLEs.
Based on these results several features are notable: (1) Each of the 15 correlations is higher
in the HC group (g1) than the SZ group (g2); (2) On average the correlations among the
HC group are rather large; and (3) The correlations within the SZ group are close to 0 on
average.
Next we present the results of the exploratory Bayesian tests which are given by

Bayesian hypothesis test
Type: exploratory
Object: cor_test
Parameter: correlation coefficients
Method: Bayes factors based on joint uniform priors

Posterior probabilities:
Pr(=0) Pr(<0) Pr(>0)

Del_with_Im_in_g1 0.000 0.000 1.000
Wmn_with_Im_in_g1 0.025 0.003 0.972
Cat_with_Im_in_g1 0.142 0.021 0.838
Fas_with_Im_in_g1 0.415 0.122 0.464
Rat_with_Im_in_g1 0.127 0.019 0.854
Wmn_with_Del_in_g1 0.193 0.028 0.779
Cat_with_Del_in_g1 0.418 0.106 0.476
Fas_with_Del_in_g1 0.437 0.123 0.439
Rat_with_Del_in_g1 0.244 0.038 0.718
Cat_with_Wmn_in_g1 0.037 0.006 0.957
Fas_with_Wmn_in_g1 0.041 0.006 0.953
Rat_with_Wmn_in_g1 0.174 0.033 0.793
Fas_with_Cat_in_g1 0.007 0.001 0.992
Rat_with_Cat_in_g1 0.011 0.001 0.987
Rat_with_Fas_in_g1 0.015 0.002 0.983
Del_with_Im_in_g2 0.272 0.056 0.672
Wmn_with_Im_in_g2 0.490 0.314 0.196
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Cat_with_Im_in_g2 0.370 0.537 0.093
Fas_with_Im_in_g2 0.466 0.384 0.151
Rat_with_Im_in_g2 0.490 0.217 0.293
Wmn_with_Del_in_g2 0.434 0.446 0.120
Cat_with_Del_in_g2 0.456 0.148 0.396
Fas_with_Del_in_g2 0.379 0.101 0.520
Rat_with_Del_in_g2 0.486 0.182 0.333
Cat_with_Wmn_in_g2 0.498 0.287 0.215
Fas_with_Wmn_in_g2 0.511 0.219 0.270
Rat_with_Wmn_in_g2 0.499 0.260 0.240
Fas_with_Cat_in_g2 0.440 0.134 0.426
Rat_with_Cat_in_g2 0.388 0.500 0.112
Rat_with_Fas_in_g2 0.475 0.350 0.176

In this output the correlations in the (first) HC group and the (second) SZ group end with
“_in_g1” and “_in_g2”, respectively. As there are 6 × 5/2 = 15 correlations in each of the
two groups, in total there are 30 correlations which are tested to be zero, negative, or positive
(assuming equal prior probabilities). These posterior probabilities shed some light about
whether each correlation is likely to be zero, negative, or positive in light of the observed
data.
Given that the overall pattern of estimated correlations across the groups is consistent with
the hypotheses in the confirmatory test, simultaneous testing procedures would appear to be a
better approach than tests on individual correlations. Indeed, both maximum likelihood and
resampling tests convincingly indicated that the covariance and correlation matrices across
groups differ (p < 0.01). However, there are a number of ways in which two correlation or
covariance matrices may differ. Thus, the conventional procedures for comparing matrices
do not test the specific hypothesis that, for each of the 15 correlations, the value for the HC
group is greater than the value for the SZ group. However hypothesis H1 can directly be
tested against its complement in a straightforward manner using BFpack. The results of the
confirmatory tests are given below:

Bayesian hypothesis test
Type: Confirmatory
Object: cor_test
Parameter: correlation coefficients
Method: Bayes factors based on joint uniform priors for correlations

Posterior probabilities:
Pr(hypothesis|data)

H1 1
H2 0

Evidence matrix (Bayes factors):
H1 H2

H1 1 5647.244
H2 0 1.000
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Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 1 0 1 0.146 1 4825.377 4825.377 1
H2 1 1 1 0.854 1 0.854 0.854 0

Thus, the Bayes Factor for H1 against H2 is approximately 5647 resulting in a posterior prob-
ability for H1 of essentially 1 under the assumption that the two hypotheses are equally likely
a priori. Thus the order-constrained analysis indicate decisive support for the researchers’
hypothesis.

4.7. Testing intraclass correlations

Statistical model and exploratory hypothesis test

The multilevel or mixed effects model is the gold standard for modeling hierarchically struc-
tured data. In the mixed effects model the within-clusters variability is separately modeled
from the between-clusters variability. The intraclass correlation plays a central role as a mea-
sure of the relative degree of clustering in the data where an intraclass correlation close to 1
(0) indicates a very high (low) degree of clustering in the data. Despite the widespread usage
of mixed effects models in the (applied) statistical literature, there are few statistical tests for
testing variance components; exceptions include Westfall and Gönen (1996); Gancia-Donato
and Sun (2007); Saville and Herring (2009); Thalmann, Niklaus, and Oberauer (2017).
Recently, a Bayesian testing framework was proposed on intraclass correlations (and random
intercept variances) was proposed by Mulder and Fox (2019) under a marginal modeling
framework (Fox et al. 2017; Mulder and Fox 2013). In the marginal model the random
effects are integrated out and the intraclass correlations have become covariance parameters
in a structured covariance matrix. As a consequence the intraclass correlations can attain
negative values. A negative intraclass correlation implies that there is a smaller degree of
clustering than under random group assignment. As the intraclass correlations are bounded
proper uniform priors can be specified under the constrained hypotheses. For example under
the unconstrained model, uniform priors are specified for the intraclass correlations in the
interval (− 1

p−1 , 1), where p is the cluster size. This prior is equivalent to a shifted-F prior on
the between-cluster variances. Improper Jeffreys priors are used for the nuisance parameters
β and φ2. This methodology is implemented in BFpack.
First a random intercept model with, possibly, different random intercept variances (yielding
different intraclass correlations) for different cluster types needs to be fit using the lmer()
function from the lme4 package (Bates, Mächler, Bolker, and Walker 2015). Next the fitted
model is plugged into BF() to compute Bayes factors and posterior probabilities for the
constrained hypotheses on the intraclass correlations. By default, exhaustive exploratory
tests are executed of whether each intraclass correlation is zero, negative, or positive, i.e.,

H1 : ρc = 0 versus H2 : ρc < 0 versus H3 : ρc > 0,

for the intraclass correlation in cluster type c = 1, . . . , C. Technical details of the methodology
can be found in Section A.5.
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Confirmatory hypothesis test in educational testing

Data from the Trends in International Mathematics and Science Study (TIMSS; http://www.
iea.nl/timss) were used to examine differences in intraclass correlations of four countries –
The Netherlands (NL), Hungary (HR), Germany (DE), and Denmark (DK) – with respect to
the mathematics achievements of fourth graders (e.g., the first plausible value was used as a
measure of mathematics achievement). The sample design of the TIMSS data set is known to
describe three levels with students nested within classrooms/schools, and classrooms/schools
nested within countries (e.g., one classroom is sampled per school). In this example, the
TIMSS 2011 assessment was considered.
The intraclass correlation was defined as the correlation among measured mathematics achieve-
ments of grade-4 students attending the same school. This intraclass correlation was assumed
to be homogeneous across schools in the same country, but was allowed to be different across
countries. For the four countries, differences in intraclass correlations were tested using the
Bayes factor. The size of the intraclass correlation can be of specific interest, since sampling
becomes less efficient when the intraclass correlation increases. Countries with low intraclass
correlations have fewer restrictions on the sample design, where countries with high intraclass
correlations require more efficient sample designs, larger sample sizes, or both. Knowledge
about the size of the heterogeneity provide useful information to optimize the development
of a suitable sample design and to minimize the effects of high intraclass correlations.
The TIMSS data sample in BFpack consists of four countries, where data was retrieved from
The Netherlands (93, 112), Hungary (139, 106), Germany (179, 170), and Denmark (166, 153)
with the sampled number of schools in brackets for 2011 and 2015, respectively. Differences
in intraclass correlations were tested conditional on several student variables (e.g., gender,
student sampling weight variable). The following hypotheses on intraclass correlations were
considered in the analyses. Country-ordered intraclass correlations were considered by hy-
pothesis H1, equal (invariant) intra-class correlations were represented by hypothesis H2, and
their complement was specified as hypothesis H3:

H1 : ρNL < ρHR < ρDE < ρDK

H2 : ρNL = ρHR = ρDE = ρDK

H3 : neither H1, nor H2.

The ordering in the intraclass correlations was hypothesized by considering the reported stan-
dard errors of the country-mean scores. From the variance inflation factor, 1 + (p− 1)ρ, with
p the number of students in each school (balanced design), followed that the variance of the
mean increases for increasing values of the intraclass correlation coefficient. As a result, the
ordering in estimated standard errors of the average mathematics achievements of fourth
graders of the cycles from 2003 to 2015 was used to hypothesize the order in intraclass corre-
lations. From a more substantive perspective, it is expected that schools in the Netherlands
do not differ much with respect to their performances (low intraclass correlation) in contrast
to Denmark, where school performances may differ considerably (high intraclass correlation).

Analyses using BFpack

A linear mixed effects model was used to obtain (restricted) maximum likelihood estimates
of the fixed effects of the student variables and the country means, the four random effects

http://www.iea.nl/timss
http://www.iea.nl/timss
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corresponding to the clustering of students in schools in each country, and the measurement
error variance, given the 2011 assessment data.

R> library("lme4")
R> timssICC_subset <- subset(timssICC, groupNL11 == 1 | groupHR11 == 1 |
+ groupDE11 == 1 | groupDK11 == 1)
R> lmer7 <- lmer(math ~ -1 + gender + weight + lln +
+ groupNL11 + (0 + groupNL11 | schoolID) +
+ groupHR11 + (0 + groupHR11 | schoolID) +
+ groupDE11 + (0 + groupDE11 | schoolID) +
+ groupDK11 + (0 + groupDK11 | schoolID),
+ data=timssICC_subset)
R> print(lmer7)

where the schoolID factor variable assigns a unique code to each school, and each country-
specific group variable (e.g., groupNL11) equals one when it concerns a school in that country
and zero otherwise. As the interest is mainly on the random effects variances, we only print
(via print(lmer7)) these here (to keep the current presentation of the results as concise as
possible):

Random effects:
Groups Name Variance Std.Dev.
schoolID groupNL11 356.2 18.87
schoolID.1 groupHR11 477.8 21.86
schoolID.2 groupDE11 633.0 25.16
schoolID.3 groupDK11 831.3 28.83
Residual 3429.6 58.56

Number of obs: 8655, groups: schoolID, 577

As can be seen the estimated random effects variances show the expected trend. However to
quantify the evidence against competing hypotheses we need to executed a formal statistical
test. Therefore, the lmer output object (Bates et al. 2015) is plugged into the BF() function
for computing Bayes factors between the hypotheses of interest:

R> set.seed(123)
R> constraints7 <- "groupNL11 < groupHR11 < groupDE11 < groupDK11;
+ groupNL11 = groupHR11 = groupDE11 = groupDK11"
R> BF7 <- BF(lmer7, hypothesis = constraints7)
R> summary(BF7)

The exploratory tests provide posterior probabilities of whether each intraclass correlation
equals zero, negative, or positive. Evidence in favor of a negative intraclass correlation indi-
cates that a multilevel model may not be appropriate for modeling these data (Mulder and
Fox 2019). The results are given by

Bayesian hypothesis test
Type: Exploratory
Object: lmerMod
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Parameter: intraclass correlations
Method: Bayes factors based on uniform priors

icc=0 icc<0 icc>0
groupNL11 0 0 1
groupHR11 0 0 1
groupDE11 0 0 1
groupDK11 0 0 1

As can be seen the exploratory results indicate that a multilevel model is a appropriate for
these data.
In the confirmatory test, the posterior probabilities of the specified hypotheses shows how
our beliefs are updated in light of the observed data regarding the hypotheses that were
formulated on the variation of school performance across countries. The results are given by

Bayesian hypothesis test
Type: Confirmatory
Object: lmerMod
Parameter: intraclass correlations
Method: Bayes factor based on uniform priors

Posterior probabilities:
Pr(hypothesis|data)

H1 0.568
H2 0.418
H3 0.014

Evidence matrix (Bayes factors):
H1 H2 H3

H1 1.000 1.359 40.501
H2 0.736 1.000 29.812
H3 0.025 0.034 1.000

Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 NA 0.043 NA 0.644 1.000 15.044 15.044 0.568
H2 NA 1.000 NA 1.000 11.073 1.000 11.073 0.418
H3 NA 0.957 NA 0.356 1.000 0.371 0.371 0.014

Hypotheses:
H1: groupNL11<groupHR11<groupDE11<groupDK11
H2: groupNL11=groupHR11=groupDE11=groupDK11
H3: complement

The posterior probabilities of the three hypotheses in the confirmatory test reveal that the
order hypothesis H1 and the equality hypothesis H2 are approximately equally plausible given
the observed data (with P (H1 | Y) = 0.568 and P (H2 | Y) = 0.418), with a slight preference
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Statistic NL HR DE DK
REML 0.094 0.122 0.156 0.195
Mean 0.099 0.126 0.159 0.198
Median 0.098 0.124 0.158 0.198
2.5% 0.061 0.091 0.123 0.157
97.5% 0.146 0.168 0.201 0.245

Table 4: TIMSS 2011: Intraclass correlation estimates for the Netherlands (NL), Hungary
(HR), Germany (DE), and Denmark (DK).

for H1, and that the complement seems unlikely (with Pr(H3Y) = 0.014). These results
indicate that the degree of clustering is either increasing or stable between countries. More
data are needed in order to draw clearer evidence towards the order hypothesis or the equality
hypothesis. Similar as when testing group variances, the Bayes factor for testing the equality
constraints cannot be expressed as a Savage-Dickey density ratio (Appendix A.5).

Statistical elaborations: Comparison of unconstrained estimates

We end with presenting the unconstrained posterior means, medians, and interval estimates
of the ICCs which can be obtained by running

R> BF7$estimates

The results are represented in Table 4. The REML intraclass correlation estimates are also
given for each country, which followed directly from the random effect estimates of the lmer
output. It can be seen that the posterior mean and REML estimates are essentially equal
for these data. The Bayesian analysis however also provides useful interval estimates with a
clear Bayesian interpretation using uniform priors. For further reading on the properties of
these estimates we refer the interested reader to Mulder and Fox (2019) and Nielsen, Smink,
and Fox (2020).

4.8. Relational event models

Statistical model and exploratory hypothesis test

The relational event model (REM) was introduced to analyze sequences of time-stamped
relational events between actors in a social network (Butts 2008; DuBois, Butts, McFarland,
and Smyth 2013). The REM can be used to understand what mechanisms drive interaction
dynamics in a temporal social network (Mulder and Leenders 2019). It builds on the survival
(or event history) model with time-varying covariates where the dependent variable is the
event rate between all possible dyads of senders and receivers in the network. For the technical
details about the methodology we refer the reader to the above references.
The relevent package can be used for fitting REMs in R (Butts 2021). As a fitted REM object
of class ‘rem.dyad’ is currently not supported by BFpack (see Table 1), adjusted fractional
Bayes factors based on Gaussian approximations (Section A.3) can be computed between
constrained hypotheses using the default function of BF(). First the REM is fitted using
the rem.dyad() function. Next the (named) vector with the maximum likelihood estimates
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(MLEs), the error covariances matrix, and the sample size are extracted from the rem.dyad
object, which are plugged in the BF() function (Section 3). This calls the default BF()
function which performs exhaustive exploratory tests on the separate parameters, i.e.,

H1 : βq = 0 versus H2 : βq < 0 versus H3 : βq > 0,

for q = 1, . . . , Q. Constrained hypotheses can be specified using the names of the parameter
estimates.

Confirmatory hypothesis test in communication networks

As was illustrated by Mulder and Leenders (2019) interaction behavior can be positively driven
by past activity between actors and common attributes of actors (also known as homophily).
To illustrate this we consider a simulated event sequence consisting of 226 relational events
(communication messages) in a small network of 25 actors (generated using the methodology
in DuBois et al. 2013) belonging to different cultures, and having different locations where
they are based. The event rate of actor pair (s, r) at time t, denoted by λ(s, r, t), is then
modeled using a log linear model,

log λ(s, r, t) = β0 + βinertia xinertia(s, r, t) + βculture xculture(s, r)
+βlocation xlocation(s, r)

where β0 is the intercept capturing the baseline of the event rate, βinertia is the inertia effect
(i.e., the general tendency for actors to keep sending messages to actors who they sent messages
to in the past), xinertia(s, r, t) is the fraction of past events sent by s that were received by
r until time t, xculture(s, r) and xlocation(s, r) are dichotomous variables whether actors s and
r have the same culture (1=yes, 0=no) and whether actors s and r are based at the same
location (1=yes, 0=no), respectively, and βculture and βlocation are the corresponding effects.
The following competing hypotheses will be considered:

H1 : βculture = βlocation > 0
H2 : βculture > βlocation > 0
H3 : βlocation > βculture > 0
H4 : neither H1, H2, nor H3.

Hypothesis H1 assumes that having the same culture and being based at the same location
have an equal positive effect on the event rate. Hypothesis H2 assumes that having the same
culture has a larger effect than begin based at the same location, and both effects are positive.
Hypothesis H3 assumes that being based at the same location has a larger effect than having
the same culture, and both effects are positive. The complement hypothesis H4 assumes that
neither the constraints under H1 nor the constraints under H2 or H3 hold.

Analyses using BFpack
To test these hypotheses first the unconstrained REM is fit using the rem.dyad() function
using the relevent (Butts 2021):

R> library("relevent")
R> CovEventEff <- array(NA, dim = c(3, nrow(actors), nrow(actors)))
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R> CovEventEff[1,,] <- 1
R> CovEventEff[2,,] <- as.matrix(same_culture)
R> CovEventEff[3,,] <- as.matrix(same_location)
R> dimnames(CovEventEff)[[1]] <- c("baseline", "culture", "location")
R> set.seed(9227)
R> remdyad8 <- rem.dyad(edgelist = relevents, n = nrow(actors), effects =
+ c("FrPSndSnd", "CovEvent"), covar = list(CovEvent = CovEventEff),
+ hessian = TRUE, fit.method = "BPM")
R> summary(remdyad8)

The MLEs and p values are then given by

Relational Event Model (Ordinal Likelihood)

Estimate Std.Err Z value Pr(>|z|)
FrPSndSnd 0.60034728 0.48674016 1.2334 0.2174
CovEvent.1 0.00078988 89.32141774 0.0000 1.0000
CovEvent.2 1.21939161 0.13587178 8.9746 <2e-16 ***
CovEvent.3 -0.01028619 0.25387330 -0.0405 0.9677

Next the estimates, the error covariance matrix, and the sample size are extracted from the
fitted object and plugged in the BF() function, together with the constrained hypotheses:

R> names(remdyad8$coef) <- c("inertia","baseline","culture", "location")
R> constraints8 <- "culture = location > 0; culture > location > 0;
+ location > culture > 0"
R> estimates8 <- remdyad8$coef
R> covmatrix8 <- remdyad8$cov
R> samplesize8 <- remdyad8$m
R> BF8 <- BF(estimates8, Sigma = covmatrix8, n = samplesize8,
+ hypothesis = constraints8)
R> summary(BF8)

In the first line new names are given to the estimated values with a clearer interpretation.
These names are then used for formulating constrained hypotheses in the hypothesis argu-
ment. The estimates, the corresponding error covariance matrix, and the sample size are then
extracted from the fitted rem.dyad object remfit. Subsequently, these are plugged into the
BF() function which then calls BF.default.
For the exploratory analysis the following output is then obtained:

Bayesian hypothesis test
Type: Exploratory
Object: numeric
Parameter: general parameters
Method: adjusted fractional Bayes factors using Gaussian approximations

Posterior probabilities:
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Pr(=0) Pr(<0) Pr(>0)
inertia 0.778 0.024 0.197
baseline 0.883 0.059 0.059
culture 0.000 0.000 1.000
location 0.882 0.061 0.057

The results clearly show that working at the same culture has a positive effect given the
observed data. For the other parameters the null hypothesis of zero effect is most plausible.
Next we discuss the results of the confirmatory test which is given by

Bayesian hypothesis test
Type: confirmatory
Object: numeric
Parameter: general parameter
Method: adjusted fractional Bayes factors using Gaussian approximations

Posterior probabilities:
Pr(hypothesis|data)

H1 0.000
H2 0.894
H3 0.000
H4 0.106

Evidence matrix (Bayes factors):
H1 H2 H3 H4

H1 1.000 0.000 46.092 0.001
H2 6070.727 1.000 279808.969 8.412
H3 0.022 0.000 1.000 0.000
H4 721.686 0.119 33263.615 1.000

Specification table:
complex= complex> fit= fit> BF= BF> BF PHP

H1 0.136 0.500 0 1.000 0 2.000 0.001 0.000
H2 1.000 0.082 1 0.484 1 5.921 5.921 0.894
H3 1.000 0.185 1 0.000 1 0.000 0.000 0.000
H4 1.000 0.733 1 0.516 1 0.704 0.704 0.106

Hypotheses:
H1: culture=location>0
H2: culture>location>0
H3: location>culture>0
H4: complement
The Bayes factors and posterior probabilities reveal there is most evidence for H2 (with a
posterior probability of 0.894), followed by the complement hypothesis H4 (with a posterior
probability of 0.106), and finally hypothesesH1 andH3 received a posterior probability of zero.
This suggests that there is most support for the hypothesis which assumes that belonging to
the same culture has a larger effect on interaction rates than being based at the same location
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and that both effects are positive. There is still a probability of 0.106 that the complement
may be true after observing the data. This can be explained from the very small negative
estimate of the location parameter of −0.0103, having a very large standard error of 0.2539.
More data would be needed in order to draw more decisive conclusions.

5. Concluding remarks
The R package BFpack was designed to allow substantive researchers to perform Bayes factor
tests via commonly used statistical functions in R, such as lm(), aov(), or glm(). By speci-
fying a simple character string that captures the hypotheses of interest, users can make use of
the flexibility of Bayes factors to simultaneously test multiple hypotheses which may involve
equality as well as order (or one-sided) constraints on the parameters of interest. This will
allow users to move beyond traditional null hypothesis (significance) testing.
Specific choices were made regarding the Bayes factors and priors that are implemented in
BFpack. When testing parameters in an unbounded space, adjusted fractional Bayes factors
(using minimal fractions) were implemented and when testing parameters in a bounded space,
Bayes factors based on proper uniform priors were considered. These Bayes factors are well-
developed for testing hypotheses with equality as well as order constraints on the parameters
of interest (Appendix A). Furthermore, as was shown in Section 4.5.5, due to the extended
Savage-Dickey density ratio, these Bayes factors can be computed in an efficient manner when
observations are missing at random. Other Bayes factors and priors could also be considered
of course. For testing parameters under a regression model, intrinsic priors (Casella and
Moreno 2006; Consonni and Paroli 2017), (hyper) g priors (Bayarri and Garcia-Donato 2007;
Liang, Paulo, Molina, Clyde, and Berger 2008; Mulder, Berger, Pena, and Bayarri 2020a),
or non-local priors (Johnson and Rossell 2010) could be specified. All these Bayes factors,
including the ones implemented in BFpack, all abide the notion of minimal prior information
(via different routes), and they are all consistent for the proposed testing problems, implying
that the evidence for the true hypothesis goes to infinity as the information in the data
grows. Thus, the quantification of statistical evidence based on these different Bayes factors
may only vary somewhat for relatively small samples, which seems reasonable in the case of
limited information. In the future it may be interesting to also implement other Bayes factors
in the package.
BFpack is (currently) mainly intended for simple exploratory tests and more complex con-
firmatory tests where a limited set of hypotheses are formulated with equality and/or order
constraints on the parameters together with their prior probabilities based on one’s scientific
expectations. The default settings will therefore not be suitable when testing a huge number
of hypotheses (or models) such as in variable selection problems where the goal is to search
for the best model among all 2k possible regression statistical models of k possible predictor
variables, where k is large. In such problems it is crucial to explicitly deal with multiplicity.
In a Bayesian framework this can naturally be done by specifying beta priors for the inclusion
probabilities (see, Scott and Berger (2010), and the references therein; or the BAS package
(Clyde et al. 2018)). Therefore, when researchers do not have clear expectations about the
relationships between the parameters of interest, and when the goal is to search for the best
model across all possible constrained models (with any possible combination of equality and
order constraints), the prior model probabilities should be appropriately specified to correct
for multiplicity. This may be an interesting direction for further research.
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The aim is to extend BFpack further. In the near future, Bayes factors will be implemented for
meta-analyses (Van Aert and Mulder accepted) via the metafor package (Viechtbauer 2010),
for testing network autocorrelations (Dittrich, Leenders, and Mulder 2017, 2019, 2020), for
testing other types of measures of association (e.g., polychoric correlations), and for testing
variance components in more general random effects models.

Computational details
For the analyses in Section 4.4 and Section 4.6, the analyses rely on Fortran or C++ compilers
which may result in slightly different results under different operating systems when using the
same seed. The analyses in Section 4.8 rely on computations with the relevent package and
results may differ under different operating systems. Note that the output in this paper was
generated with R 4.1.1, relevent R package 1.0.4, gfortran GNU Fortran (GCC) 8.2.0, and
Apple clang version 12.0.5. Exact results may depend on the operating system, version of R,
compiler, and compiler version. However, the results in other setups will be very similar and
lead to the same conclusions qualitatively.
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A. Technical and computational details

A.1. Adjusted fractional Bayes factors under multivariate normal model

Under a multivariate normal linear model for J groups with K predictor variables, the i-th
observations of the p-th outcome variable is defined by

yip =
J∑
j=1

dijµjp +
K∑
k=1

xikβkp + εip,

where εi = (εi1, . . . , εiP )′ ∼ N(0,Σ), dij = 1 if the i-th observation belongs to group j, and
zero elsewhere, µjp is the (adjusted) mean of the p-th dependent variable for group j, xik is
the i-th observation of the k-the predictor variable, and βkp is the effect of the k-th predictor
variable on the p-th outcome variable. The assumed distribution of the i-th observation can
compactly be written as yi ∼ N(Θ>x̃i,Σ), where x̃>i = (d>i ,x>i ) and Θ> = [M> B>], where
M is a J × P matrix where the (j, p)-th element is the (adjusted) group mean µjp and B
is a K × P matrix where the (k, p)-th element is βkp. Tests that fall under this model are
(multivariate) t tests, univariate/multivariate regression, (M)AN(C)OVA, among others.
Under the adjusted fractional Bayes factor, which is employed for Bayesian hypothesis test-
ing under the multivariate normal linear model, the marginal likelihood for the constrained
hypothesis Ht is defined by

pt(Y) =
∫

Σ
∫

Θt

∏N
i=1 p(yi | di,bfxi,Θ,Σ)|Σ|−P +1

2 dΘdΣ∫
Σ
∫

Θ∗t

∏N
i=1 p(yi | di,xi,Θ,Σ)bi |Σ|−

P +1
2 dΘdΣ

, (6)

where Θ contains the (adjusted) group means and regression effects, on which constraints
are formulated under Ht, the constrained parameter space under Ht is defined by Θt = {Θ |
Reθ = re & Roθ > ro}, where θ = vec(Θ), bi denotes a group specific minimal fraction
which is equal to (P+K)/J

Nj
if the i-th observation belongs to the j-th group, and the adjusted

parameter space is defined by Θ∗t = {Θ | Re(θ + θ̂−θ0) = re & Ro(θ + θ̂−θ0) > ro}, where
θ0 = [Re′Ro′ ]′−1 [re′ro′ ]′, using the generalized Moore-Penrose inverse. Unlike the standard
definition of a marginal likelihood in Equation 2, no proper prior needs to be specified based on
external (subjective) considerations. Instead, the marginal likelihood in Equation 6, implicitly
uses a fraction, denoted by “bi” for the i-th observations, for constructing a fractional prior,
while the remaining fraction of the information in the data is used for hypothesis testing.
Minimal fractions are used so that the remaining fraction that is used for hypothesis testing
is maximal (Berger and Mortera 1995; Conigliani and O’Hagan 2000). The generalization of
the original fractional Bayes factor (O’Hagan 1995) to group specific fractions ensures that
the implied fractional prior contains minimal information in the case of unbalanced data with
unequal group sizes and it avoids inconsistent selection behavior (De Santis and Spezzaferri
2001; Hoijtink, Gu, and Mulder 2019a). Furthermore, the adjusted parameter space results in
a shift of the unconstrained fractional prior to the boundary of the constrained space (Mulder
2014). This ensures that the default Bayes factor that captures the relative complexity of an
order or one-sided hypothesis as the relative size of the constrained parameter space, e.g., 0.5
for a univariate one-sided test of H1 : µ > 0, which covers half of the parameter space, as a
result of an unconstrained fraction prior that is centered at the test value 0.



Journal of Statistical Software 59

Consequently the default Bayes factor of a constrained hypothesis against an unconstrained
hypothesis can then be written as a Savage-Dickey density ratio in Equation 5 of the form

Btu = πu(θe = re | Y)
πu(θe = re | Y,b) ×

Pu(θo > ro | θe = re,Y)
Pu(θo > ro | θe = re | Y,b) , (7)

where θe = Reθ and θo = Roθ, and the unconstrained posterior for Θ, where θ = vec(Θ), in
the numerators follows a K × P matrix t distribution and the unconstrained fractional prior
in the denominators follows a K × P matrix Cauchy distribution given by

πu(Θ | Y) = TK×P (Θ̂, (X>X)−1,S, N −K − P + 1)
πu(Θ | Y,b) = CK×P (Θ0, (X>bXb)−1,Sb),

where the first element in the matrix t distribution is a location parameter, the second and
third element are scale matrices, and the fourth element is the degrees of freedom, and the
first element in the matrix Cauchy distribution is a location parameter, the second and third
element are scale matrices. Furthermore, the OLS estimate is given by Θ̂ = (X′X)−1X′Y,
the sums of square matrix equals S = (Y −XΘ̂)>(Y −XΘ̂), the sums of square matrix in
the fractional prior equals Sb = (Yb−XbΘ̂b)>(Yb−XbΘ̂b), with Θ̂b = (X>bXb)−1X>bYb,
where Yb and Xb are the stacked matrices of y>i,bi

and x>i,bi
, with yi,bi

=
√
biyi and xi,bi

=√
bixi, and the i-th fraction is equal to the K+P

JNj
if the i-th observation belongs to group j,

where Nj is the sample size of group j. The fact that the fractional prior has a matrix Cauchy
distribution (which is equivalent to a matrix Student t distribution with 1 degree of freedom,
implying minimal information) is a direct consequence of the group specific minimal fractions.
The fact that the unconstrained prior is located at the value that is tested, as Reθ0 = re and
Roθ0 = ro hold, where θ0 = vec(Θ0), is a direct consequence of the prior adjusted parameter
space. This implies that small deviations from the test value are more likely a priori than
large deviations and that negative deviations are equally likely a priori as positive deviations
from the test value, similar as in Jeffreys (1961) recommendations for prior specifications.
Note that other commonly used priors are also centered at the test value, such as intrinsic
priors (Casella and Moreno 2006; Consonni and Paroli 2017), (hyper) g priors (Bayarri and
Garcia-Donato 2007; Liang et al. 2008; Mulder et al. 2020a), or non-local priors (Johnson
and Rossell 2010). For technical details on the derivation this default Bayes factor we refer
the interested reader to Mulder and Olsson-Collentine (2019) for the univariate regression
model, and to Mulder and Gu (2021) for the general multivariate normal model with multiple
groups. Furthermore, for univariate models the probability densities in the first factor in
Equation 7 can be computed using the dmvt() function in the mvtnorm package (Genz et al.
2021), and the probabilities in the second factor can be computed using the pmvt() function
in the mvtnorm package. For multivariate models we use a Monte Carlo estimate using the
fact that a matrix-variate Student t distribution can be written as an inverse Wishart mixture
of matrix-variate normal distributions (Box and Tiao 1973; Mulder and Gu 2021).

A.2. Adjusted fractional Bayes factors for testing group variances

The generalized adjusted fractional Bayes methodology is also used for testing equality/order
constraints on group variances (Böing-Messing et al. 2017b; Böing-Messing and Mulder 2018).
As variances are scale parameters, the adjustment is done by re-scaling the fractional prior
instead of the shifting the fractional prior as was done when testing location parameters
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under the multivariate normal linear model. The fractional priors of the group variances
then follow inverse gamma distributions based on minimal fractions of 2

nj
in group j, as each

group contains two unknown parameters (a group mean and a group variance), where nj
is the sample size of group j. This Bayes factor cannot be written as an extended Savage-
Dickey density ratio for testing equality constraints. As the final expression of the marginal
likelihoods are quite extensive we refer the interested reader to Böing-Messing et al. (2017b,
Appendix B) for the technical details. Interestingly, Dablander, Van den Bergh, Ly, and
Wagenmakers (2020) showed that this default Bayes factor is virtually identical to an actual
Bayes factor based on a minimally informative beta prior on the group variance and the sum
of the group variances.

A.3. Adjusted fractional Bayes factors using Gaussian approximations
When testing coefficients under non-normal models, such as generalized linear models (Sec-
tion 4.4) or relational event models (Section 4.8), an approximation of this default Bayes
factor can be used (Gu et al. 2017), which is also implemented in BFpack as BF.default().
It relies on a large sample Gaussian approximation of the unconstrained posterior of the key
parameters in the numerator in Equation 7, i.e., πu(θ | Y) ≈ N(µθ,Σθ), where the mean
and covariance matrix can be computed using available R packages (e.g., using glm() for gen-
eralized linear models). Similarly, the adjusted fractional prior based on a common fraction
b can be written as πu(θ | Y, b) ≈ N(θ0, b

−1Σθ), where the prior mean satisfies Reθ0 = re
and Roθ0 = ro, and the prior covariance matrix is a re-scaled version of the approximated
posterior covariance matrix based on a minimal fraction, which is equal to number of key
parameters divided by the sample size, i.e., b = dim(θ)

N . The probabilities densities in the first
factor can then be computed using dmvnorm() and the probabilities can be computed using
pmvnorm() using the mvtnorm package (Genz et al. 2021).

A.4. Testing measures of association
The dependent variables in group j are assumed to follow a multivariate normal model,
N(µj ,Σj), where µj is the mean vector under group j (which are nuisance parameters), Σj

is the covariance matrix, such that Σj = diag(σj)Cjdiag(σj), where σj is a vector containing
the standard deviations of the dependent variables in group j, andCj is the correlation matrix,
where its (p, q)-th element is the correlation between variable p and q in group j, denoted
by ρjpq. Proper uniform priors are specified for the free correlations under a constrained
hypotheses in the restricted space of positive definite correlation matrices, and improper
independent Jeffreys priors are used for the nuisance parameters. This implies a proper joint
uniform prior under the unconstrained model, which is given by

π(Cj) = V −1
j × I(Cj > 0)

where Cj > 0 implies that Cj is positive definite, Vj is the volume of the parameter space of
positive definite matrices, Vj =

∫
Cj>0 1dCj , and I(·) is the indicator function.

It can be shown that the Bayes factor for a constrained hypothesis on measures of association
against an unconstrained alternative can be written as Equation 5. In order to compute the
four quantities in the Savage-Dickey density ratio, it is useful to apply a Fisher transformation
to the correlations, as the resulting unconstrained posterior then follows an approximate
multivariate normal distribution (Mulder 2016; Mulder and Gelissen 2019), i.e., πu(ρF | Y) ≈
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N(µF
ρ ,ΣF

ρ ), where the Fisher transformation of a single correlation is defined by ρFjpq =
1
2 log

(
1+ρjpq

1−ρjpq

)
, where ρjpq and ρFjpq denote the correlation in group j between variables p and q

and its corresponding Fisher transformed equivalence, respectively. Therefore for the posterior
parts in the numerators in Equation 5 we can make use of dmvnorm() and pmvnorm() from
the mvtnorm package (Genz et al. 2021). For the prior parts a numerical (non-parametric)
estimates are used. Technical details on the computation can be found in Mulder and Gelissen
(2019, Section 4 and 5).

A.5. Testing intraclass correlations

A Bayes factor testing procedure is implemented for intraclass correlations (and random
intercept variances) under a marginal modeling framework where the random effects are
integrated out (Mulder and Fox 2019; Fox et al. 2017; Mulder and Fox 2013), i.e.,


ycij = x>cijβ + δci + εcij
δci ∼ N(0, τ2

c )
εcij ∼ N(0, σ2)

⇒
{

ycj ∼ N (Xcjβ,Σcj)
Σcj = φ2(1− ρ1)

(
Ipcj + ρc

1−ρc
Jpcj

)
,

where ycij is the outcome variable of the i-th observation in cluster j of cluster type c, xcij
contain its predictor variables, β are the fixed effects, τ2

c is the between-cluster variance in
cluster type c, σ2 is the within-cluster variance, φ2 = τ2

1 +σ2 is the total variance in cluster 1,
ρc = τ2

c
τ2

c +σ2 is the intraclass correlation in cluster type c, and pcj is the number of observations
in cluster j of cluster type c. Furthermore Ipcj is a pcj × pcj identity matrix and Jpcj is a
pcj × pcj matrix of ones.

As explained above the intraclass correlations become covariance parameters under the inte-
grated model which may attain negative values while keeping the covariance matrix positive
definite: The covariance matrix of the observations in cluster j of type c, Σcj , is positive
definite if ρc ∈ (− 1

pcj−1 , 1) (where the negative lower bound depends on the cluster size pcj).
In BFpack proper uniform priors are assumed for the intraclass correlations, i.e., under cluster
type c a uniform prior is set for ρc in the interval (− 1

maxj{pcj}−1 , 1), where maxj{pcj} is the
largest cluster size of type c. Specifying this prior (and the more general stretched beta prior)
is equivalent to a shifted F prior on the between-cluster variance (Mulder and Fox 2019,
Lemma 1). Improper independent Jeffreys priors are used for the nuisance parameters β
and φ2.

By allowing the intraclass correlations to be negative we can test the appropriateness of a
random effects model using the posterior probability that an intraclass correlation is positive.
By default BFpack computes posterior probabilities for the hypotheses assuming a zero, a
negative, or a positive intraclass correlation. Similar as when testing group variances, the
equality part of the Bayes factor of a constrained hypothesis on the intraclass correlations
against an unconstrained alternative cannot be expressed as a Savage-Dickey density ratio.
For the technical derivations of the marginal likelihood we refer the interested reader to
Mulder and Fox (2019, Lemma 3)
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B. Computing Bayes factors with missing observations
Handling incomplete data matrices due to missing data is a ubiquitous problem in statistical
practice. The natural Bayesian solution is to treat the missing observations as unknown pa-
rameters and sample them from their posterior predictive distribution in the MCMC sampler
to properly take the induced uncertainty caused by the missing observations into account in
the estimation of the model parameters. In the current situation of model uncertainty, we
would thus need to compute the marginal likelihoods using the respective posterior predictive
distributions under all constrained models under investigation. This would be a great com-
putational burden when considering many different hypotheses with different combinations
of equality and order constraints on the parameters of interest.
The computation can be greatly simplified when the Bayes factor can be written as an ex-
tended Savage-Dickey density ratio in Equation 5. As a simple example, let us consider
a precise test of H1 : θ = 0 versus H2 : θ ∈ R (with nuisance parameters φ) using the
Savage-Dickey density ratio,

B12 = πu(θ = 0 | Yobs)
πu(θ = 0) , (8)

where Yobs denotes the matrix with the observed data. Using standard probability calculus
it follows automatically that

πu(θ = 0 | Yobs) =
∫
πu(θ = 0 | Yobs,Ymiss)pu(Ymiss | Yobs)dYmiss,

where pu(Ymiss | Yobs) is the posterior predictive distribution under the unconstrained model.
This basic identity plays a central role in multiple imputation (Rubin 1996, p. 476). Fol-
lowing the theory on multiple imputation, we could obtain a statistically valid estimate of
the unconstrained posterior density at θ = 0 based on the observed data as the arithmetic
average based on the complete-data posterior of θ under the unconstrained model, i.e.,

πu(θ = 0 | Yobs) ≈M−1
M∑
m=1

πu(θ = 0 | Yobs,Y
(m)
miss),

where Y(m)
miss denotes the m-th draw from the unconstrained posterior predictive distribution

of the missing observations.
To obtain complete-data matrices from the unconstrained (marginal) posterior predictive dis-
tribution we use the R package mice (Van Buuren and Groothuis-Oudshoorn 2021). The
MICE algorithm (Van Buuren and Groothuis-Oudshoorn 2011) is a Gibbs sampler, which
is a Bayesian simulation technique that samples sequentially from the conditional posterior
distributions to obtain draws from the joint distribution (Gelfand and Smith 1990). The re-
quired posterior estimate can then be obtained using the above Monte Carlo estimate based
on the complete-data matrices acquired by mice. Hence to obtain the Bayes factor in Equa-
tion 8 we only need a sample of complete data matrices under the unconstrained model,
and not require a sample under the equality constrained model. This holds in general when
considering many different constrained hypotheses with equality and order constraints where
the Bayes factor of each constrained hypothesis against an unconstrained alternative can be
written as an extended Savage-Dickey density ratio where all the statistical quantities need to
be estimated under the same unconstrained model. Therefore we only need to get one sample
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of the complete-data matrices from the unconstrained posterior predictive distribution us-
ing mice to obtain the statistical quantities to compute the Bayes factors for all constrained
hypotheses against the unconstrained alternative. This methodology can also be used for
computing the relative complexity measures based on the fractional prior in the generalized
adjusted fractional Bayes factor (Mulder and Gu 2021) and its approximation (Hoijtink et al.
2019b) when missing observations are present.
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